Merge pull request #818 from webgeist/master
Add feature_importances_ property for XGBClassifier
This commit is contained in:
commit
2baea12d97
@ -326,6 +326,8 @@ class XGBClassifier(XGBModel, XGBClassifierBase):
|
||||
else:
|
||||
evals = ()
|
||||
|
||||
self._features_count = X.shape[1]
|
||||
|
||||
self._le = LabelEncoder().fit(y)
|
||||
training_labels = self._le.transform(y)
|
||||
|
||||
@ -414,6 +416,22 @@ class XGBClassifier(XGBModel, XGBClassifierBase):
|
||||
|
||||
return evals_result
|
||||
|
||||
@property
|
||||
def feature_importances_(self):
|
||||
"""
|
||||
Returns
|
||||
-------
|
||||
feature_importances_ : array of shape = [n_features]
|
||||
|
||||
"""
|
||||
fs = self.booster().get_fscore()
|
||||
keys = [int(k.replace('f', '')) for k in fs.keys()]
|
||||
fs_dict = dict(zip(keys, fs.values()))
|
||||
all_features_dict = dict.fromkeys(range(0, self._features_count), 0)
|
||||
all_features_dict.update(fs_dict)
|
||||
return np.array(all_features_dict.values())
|
||||
|
||||
|
||||
class XGBRegressor(XGBModel, XGBRegressorBase):
|
||||
# pylint: disable=missing-docstring
|
||||
__doc__ = """Implementation of the scikit-learn API for XGBoost regression.
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user