Reducing memory consumption for 'hist' method on CPU (#5334)

This commit is contained in:
ShvetsKS 2020-03-28 04:45:52 +03:00 committed by GitHub
parent 13b10a6370
commit 27a8e36fc3
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 849 additions and 241 deletions

View File

@ -10,13 +10,13 @@
#include <limits>
#include <vector>
#include <memory>
#include "hist_util.h"
namespace xgboost {
namespace common {
class ColumnMatrix;
/*! \brief column type */
enum ColumnType {
kDenseColumn,
@ -24,40 +24,72 @@ enum ColumnType {
};
/*! \brief a column storage, to be used with ApplySplit. Note that each
bin id is stored as index[i] + index_base. */
bin id is stored as index[i] + index_base.
Different types of column index for each column allow
to reduce the memory usage. */
template <typename BinIdxType>
class Column {
public:
Column(ColumnType type, const uint32_t* index, uint32_t index_base,
const size_t* row_ind, size_t len)
Column(ColumnType type, common::Span<const BinIdxType> index, const uint32_t index_base)
: type_(type),
index_(index),
index_base_(index_base),
row_ind_(row_ind),
len_(len) {}
size_t Size() const { return len_; }
uint32_t GetGlobalBinIdx(size_t idx) const { return index_base_ + index_[idx]; }
uint32_t GetFeatureBinIdx(size_t idx) const { return index_[idx]; }
common::Span<const uint32_t> GetFeatureBinIdxPtr() const { return { index_, len_ }; }
// column.GetFeatureBinIdx(idx) + column.GetBaseIdx(idx) ==
// column.GetGlobalBinIdx(idx)
uint32_t GetBaseIdx() const { return index_base_; }
index_base_(index_base) {}
uint32_t GetGlobalBinIdx(size_t idx) const {
return index_base_ + static_cast<uint32_t>(index_[idx]);
}
BinIdxType GetFeatureBinIdx(size_t idx) const { return index_[idx]; }
const uint32_t GetBaseIdx() const { return index_base_; }
common::Span<const BinIdxType> GetFeatureBinIdxPtr() const { return index_; }
ColumnType GetType() const { return type_; }
size_t GetRowIdx(size_t idx) const {
// clang-tidy worries that row_ind_ might be a nullptr, which is possible,
// but low level structure is not safe anyway.
return type_ == ColumnType::kDenseColumn ? idx : row_ind_[idx]; // NOLINT
}
bool IsMissing(size_t idx) const {
return index_[idx] == std::numeric_limits<uint32_t>::max();
}
const size_t* GetRowData() const { return row_ind_; }
/* returns number of elements in column */
size_t Size() const { return index_.size(); }
private:
/* type of column */
ColumnType type_;
const uint32_t* index_;
uint32_t index_base_;
const size_t* row_ind_;
const size_t len_;
/* bin indexes in range [0, max_bins - 1] */
common::Span<const BinIdxType> index_;
/* bin index offset for specific feature */
const uint32_t index_base_;
};
template <typename BinIdxType>
class SparseColumn: public Column<BinIdxType> {
public:
SparseColumn(ColumnType type, common::Span<const BinIdxType> index,
uint32_t index_base, common::Span<const size_t> row_ind)
: Column<BinIdxType>(type, index, index_base),
row_ind_(row_ind) {}
const size_t* GetRowData() const { return row_ind_.data(); }
size_t GetRowIdx(size_t idx) const {
return row_ind_.data()[idx];
}
private:
/* indexes of rows */
common::Span<const size_t> row_ind_;
};
template <typename BinIdxType>
class DenseColumn: public Column<BinIdxType> {
public:
DenseColumn(ColumnType type, common::Span<const BinIdxType> index,
uint32_t index_base,
const std::vector<bool>::const_iterator missing_flags)
: Column<BinIdxType>(type, index, index_base),
missing_flags_(missing_flags) {}
bool IsMissing(size_t idx) const { return missing_flags_[idx]; }
private:
/* flags for missing values in dense columns */
std::vector<bool>::const_iterator missing_flags_;
};
/*! \brief a collection of columns, with support for construction from
@ -74,23 +106,22 @@ class ColumnMatrix {
double sparse_threshold) {
const int32_t nfeature = static_cast<int32_t>(gmat.cut.Ptrs().size() - 1);
const size_t nrow = gmat.row_ptr.size() - 1;
// identify type of each column
feature_counts_.resize(nfeature);
type_.resize(nfeature);
std::fill(feature_counts_.begin(), feature_counts_.end(), 0);
uint32_t max_val = std::numeric_limits<uint32_t>::max();
for (int32_t fid = 0; fid < nfeature; ++fid) {
CHECK_LE(gmat.cut.Ptrs()[fid + 1] - gmat.cut.Ptrs()[fid], max_val);
}
bool all_dense = gmat.IsDense();
gmat.GetFeatureCounts(&feature_counts_[0]);
// classify features
for (int32_t fid = 0; fid < nfeature; ++fid) {
if (static_cast<double>(feature_counts_[fid])
< sparse_threshold * nrow) {
type_[fid] = kSparseColumn;
all_dense = false;
} else {
type_[fid] = kDenseColumn;
}
@ -98,101 +129,207 @@ class ColumnMatrix {
// want to compute storage boundary for each feature
// using variants of prefix sum scan
boundary_.resize(nfeature);
feature_offsets_.resize(nfeature + 1);
size_t accum_index_ = 0;
size_t accum_row_ind_ = 0;
for (int32_t fid = 0; fid < nfeature; ++fid) {
boundary_[fid].index_begin = accum_index_;
boundary_[fid].row_ind_begin = accum_row_ind_;
if (type_[fid] == kDenseColumn) {
feature_offsets_[0] = accum_index_;
for (int32_t fid = 1; fid < nfeature + 1; ++fid) {
if (type_[fid - 1] == kDenseColumn) {
accum_index_ += static_cast<size_t>(nrow);
accum_row_ind_ += static_cast<size_t>(nrow);
} else {
accum_index_ += feature_counts_[fid];
accum_row_ind_ += feature_counts_[fid];
accum_index_ += feature_counts_[fid - 1];
}
boundary_[fid].index_end = accum_index_;
boundary_[fid].row_ind_end = accum_row_ind_;
feature_offsets_[fid] = accum_index_;
}
index_.resize(boundary_[nfeature - 1].index_end);
row_ind_.resize(boundary_[nfeature - 1].row_ind_end);
SetTypeSize(gmat.max_num_bins_);
index_.resize(feature_offsets_[nfeature] * bins_type_size_, 0);
if (!all_dense) {
row_ind_.resize(feature_offsets_[nfeature]);
}
// store least bin id for each feature
index_base_.resize(nfeature);
for (int32_t fid = 0; fid < nfeature; ++fid) {
index_base_[fid] = gmat.cut.Ptrs()[fid];
index_base_ = const_cast<uint32_t*>(gmat.cut.Ptrs().data());
const bool noMissingValues = NoMissingValues(gmat.row_ptr[nrow], nrow, nfeature);
if (noMissingValues) {
missing_flags_.resize(feature_offsets_[nfeature], false);
} else {
missing_flags_.resize(feature_offsets_[nfeature], true);
}
// pre-fill index_ for dense columns
#pragma omp parallel for
for (int32_t fid = 0; fid < nfeature; ++fid) {
if (type_[fid] == kDenseColumn) {
const size_t ibegin = boundary_[fid].index_begin;
uint32_t* begin = &index_[ibegin];
uint32_t* end = begin + nrow;
std::fill(begin, end, std::numeric_limits<uint32_t>::max());
// max() indicates missing values
if (all_dense) {
BinTypeSize gmat_bin_size = gmat.index.getBinTypeSize();
if (gmat_bin_size == UINT8_BINS_TYPE_SIZE) {
SetIndexAllDense(gmat.index.data<uint8_t>(), gmat, nrow, nfeature, noMissingValues);
} else if (gmat_bin_size == UINT16_BINS_TYPE_SIZE) {
SetIndexAllDense(gmat.index.data<uint16_t>(), gmat, nrow, nfeature, noMissingValues);
} else {
CHECK_EQ(gmat_bin_size, UINT32_BINS_TYPE_SIZE);
SetIndexAllDense(gmat.index.data<uint32_t>(), gmat, nrow, nfeature, noMissingValues);
}
/* For sparse DMatrix gmat.index.getBinTypeSize() returns always UINT32_BINS_TYPE_SIZE
but for ColumnMatrix we still have a chance to reduce the memory consumption */
} else {
if (bins_type_size_ == UINT8_BINS_TYPE_SIZE) {
SetIndex<uint8_t>(gmat.index.data<uint32_t>(), gmat, nrow, nfeature);
} else if (bins_type_size_ == UINT16_BINS_TYPE_SIZE) {
SetIndex<uint16_t>(gmat.index.data<uint32_t>(), gmat, nrow, nfeature);
} else {
CHECK_EQ(bins_type_size_, UINT32_BINS_TYPE_SIZE);
SetIndex<uint32_t>(gmat.index.data<uint32_t>(), gmat, nrow, nfeature);
}
}
}
// loop over all rows and fill column entries
// num_nonzeros[fid] = how many nonzeros have this feature accumulated so far?
/* Set the number of bytes based on numeric limit of maximum number of bins provided by user */
void SetTypeSize(size_t max_num_bins) {
if ( (max_num_bins - 1) <= static_cast<int>(std::numeric_limits<uint8_t>::max()) ) {
bins_type_size_ = UINT8_BINS_TYPE_SIZE;
} else if ((max_num_bins - 1) <= static_cast<int>(std::numeric_limits<uint16_t>::max())) {
bins_type_size_ = UINT16_BINS_TYPE_SIZE;
} else {
bins_type_size_ = UINT32_BINS_TYPE_SIZE;
}
}
/* Fetch an individual column. This code should be used with type swith
to determine type of bin id's */
template <typename BinIdxType>
std::unique_ptr<const Column<BinIdxType> > GetColumn(unsigned fid) const {
CHECK_EQ(sizeof(BinIdxType), bins_type_size_);
const size_t feature_offset = feature_offsets_[fid]; // to get right place for certain feature
const size_t column_size = feature_offsets_[fid + 1] - feature_offset;
common::Span<const BinIdxType> bin_index = { reinterpret_cast<const BinIdxType*>(
&index_[feature_offset * bins_type_size_]),
column_size };
std::unique_ptr<const Column<BinIdxType> > res;
if (type_[fid] == ColumnType::kDenseColumn) {
std::vector<bool>::const_iterator column_iterator = missing_flags_.begin();
advance(column_iterator, feature_offset); // increment iterator to right position
res.reset(new DenseColumn<BinIdxType>(type_[fid], bin_index, index_base_[fid],
column_iterator));
} else {
res.reset(new SparseColumn<BinIdxType>(type_[fid], bin_index, index_base_[fid],
{&row_ind_[feature_offset], column_size}));
}
return res;
}
template<typename T>
inline void SetIndexAllDense(T* index, const GHistIndexMatrix& gmat, const size_t nrow,
const size_t nfeature, const bool noMissingValues) {
T* local_index = reinterpret_cast<T*>(&index_[0]);
/* missing values make sense only for column with type kDenseColumn,
and if no missing values were observed it could be handled much faster. */
if (noMissingValues) {
const int32_t nthread = omp_get_max_threads();
#pragma omp parallel for num_threads(nthread)
for (omp_ulong rid = 0; rid < nrow; ++rid) {
const size_t ibegin = rid*nfeature;
const size_t iend = (rid+1)*nfeature;
size_t j = 0;
for (size_t i = ibegin; i < iend; ++i, ++j) {
const size_t idx = feature_offsets_[j];
local_index[idx + rid] = index[i];
}
}
} else {
/* to handle rows in all batches, sum of all batch sizes equal to gmat.row_ptr.size() - 1 */
size_t rbegin = 0;
for (const auto &batch : gmat.p_fmat_->GetBatches<SparsePage>()) {
const xgboost::Entry* data_ptr = batch.data.HostVector().data();
const std::vector<bst_row_t>& offset_vec = batch.offset.HostVector();
const size_t batch_size = batch.Size();
CHECK_LT(batch_size, offset_vec.size());
for (size_t rid = 0; rid < batch_size; ++rid) {
const size_t size = offset_vec[rid + 1] - offset_vec[rid];
SparsePage::Inst inst = {data_ptr + offset_vec[rid], size};
const size_t ibegin = gmat.row_ptr[rbegin + rid];
const size_t iend = gmat.row_ptr[rbegin + rid + 1];
CHECK_EQ(ibegin + inst.size(), iend);
size_t j = 0;
size_t fid = 0;
for (size_t i = ibegin; i < iend; ++i, ++j) {
fid = inst[j].index;
const size_t idx = feature_offsets_[fid];
/* rbegin allows to store indexes from specific SparsePage batch */
local_index[idx + rbegin + rid] = index[i];
missing_flags_[idx + rbegin + rid] = false;
}
}
rbegin += batch.Size();
}
}
}
template<typename T>
inline void SetIndex(uint32_t* index, const GHistIndexMatrix& gmat,
const size_t nrow, const size_t nfeature) {
std::vector<size_t> num_nonzeros;
num_nonzeros.resize(nfeature);
std::fill(num_nonzeros.begin(), num_nonzeros.end(), 0);
for (size_t rid = 0; rid < nrow; ++rid) {
const size_t ibegin = gmat.row_ptr[rid];
const size_t iend = gmat.row_ptr[rid + 1];
size_t fid = 0;
for (size_t i = ibegin; i < iend; ++i) {
const uint32_t bin_id = gmat.index[i];
auto iter = std::upper_bound(gmat.cut.Ptrs().cbegin() + fid,
gmat.cut.Ptrs().cend(), bin_id);
fid = std::distance(gmat.cut.Ptrs().cbegin(), iter) - 1;
if (type_[fid] == kDenseColumn) {
uint32_t* begin = &index_[boundary_[fid].index_begin];
begin[rid] = bin_id - index_base_[fid];
} else {
uint32_t* begin = &index_[boundary_[fid].index_begin];
begin[num_nonzeros[fid]] = bin_id - index_base_[fid];
row_ind_[boundary_[fid].row_ind_begin + num_nonzeros[fid]] = rid;
++num_nonzeros[fid];
T* local_index = reinterpret_cast<T*>(&index_[0]);
size_t rbegin = 0;
for (const auto &batch : gmat.p_fmat_->GetBatches<SparsePage>()) {
const xgboost::Entry* data_ptr = batch.data.HostVector().data();
const std::vector<bst_row_t>& offset_vec = batch.offset.HostVector();
const size_t batch_size = batch.Size();
CHECK_LT(batch_size, offset_vec.size());
for (size_t rid = 0; rid < batch_size; ++rid) {
const size_t ibegin = gmat.row_ptr[rbegin + rid];
const size_t iend = gmat.row_ptr[rbegin + rid + 1];
size_t fid = 0;
const size_t size = offset_vec[rid + 1] - offset_vec[rid];
SparsePage::Inst inst = {data_ptr + offset_vec[rid], size};
CHECK_EQ(ibegin + inst.size(), iend);
size_t j = 0;
for (size_t i = ibegin; i < iend; ++i, ++j) {
const uint32_t bin_id = index[i];
fid = inst[j].index;
if (type_[fid] == kDenseColumn) {
T* begin = &local_index[feature_offsets_[fid]];
begin[rid + rbegin] = bin_id - index_base_[fid];
missing_flags_[feature_offsets_[fid] + rid + rbegin] = false;
} else {
T* begin = &local_index[feature_offsets_[fid]];
begin[num_nonzeros[fid]] = bin_id - index_base_[fid];
row_ind_[feature_offsets_[fid] + num_nonzeros[fid]] = rid + rbegin;
++num_nonzeros[fid];
}
}
}
rbegin += batch.Size();
}
}
/* Fetch an individual column. This code should be used with XGBOOST_TYPE_SWITCH
to determine type of bin id's */
inline Column GetColumn(unsigned fid) const {
Column c(type_[fid], &index_[boundary_[fid].index_begin], index_base_[fid],
(type_[fid] == ColumnType::kSparseColumn ?
&row_ind_[boundary_[fid].row_ind_begin] : nullptr),
boundary_[fid].index_end - boundary_[fid].index_begin);
return c;
const BinTypeSize GetTypeSize() const {
return bins_type_size_;
}
const bool NoMissingValues(const size_t n_elements,
const size_t n_row, const size_t n_features) {
return n_elements == n_features * n_row;
}
private:
struct ColumnBoundary {
// indicate where each column's index and row_ind is stored.
// index_begin and index_end are logical offsets, so they should be converted to
// actual offsets by scaling with packing_factor_
size_t index_begin;
size_t index_end;
size_t row_ind_begin;
size_t row_ind_end;
};
std::vector<uint8_t> index_;
std::vector<size_t> feature_counts_;
std::vector<ColumnType> type_;
std::vector<uint32_t> index_; // index_: may store smaller integers; needs padding
std::vector<size_t> row_ind_;
std::vector<ColumnBoundary> boundary_;
/* indicate where each column's index and row_ind is stored. */
std::vector<size_t> feature_offsets_;
// index_base_[fid]: least bin id for feature fid
std::vector<uint32_t> index_base_;
uint32_t* index_base_;
std::vector<bool> missing_flags_;
BinTypeSize bins_type_size_;
};
} // namespace common

View File

@ -29,6 +29,89 @@
namespace xgboost {
namespace common {
template<typename BinIdxType>
void GHistIndexMatrix::SetIndexDataForDense(common::Span<BinIdxType> index_data_span,
size_t batch_threads, const SparsePage& batch,
size_t rbegin, common::Span<const uint32_t> offsets_span,
size_t nbins) {
const xgboost::Entry* data_ptr = batch.data.HostVector().data();
const std::vector<bst_row_t>& offset_vec = batch.offset.HostVector();
const size_t batch_size = batch.Size();
CHECK_LT(batch_size, offset_vec.size());
BinIdxType* index_data = index_data_span.data();
const uint32_t* offsets = offsets_span.data();
#pragma omp parallel for num_threads(batch_threads) schedule(static)
for (omp_ulong i = 0; i < batch_size; ++i) {
const int tid = omp_get_thread_num();
size_t ibegin = row_ptr[rbegin + i];
size_t iend = row_ptr[rbegin + i + 1];
const size_t size = offset_vec[i + 1] - offset_vec[i];
SparsePage::Inst inst = {data_ptr + offset_vec[i], size};
CHECK_EQ(ibegin + inst.size(), iend);
for (bst_uint j = 0; j < inst.size(); ++j) {
uint32_t idx = cut.SearchBin(inst[j]);
index_data[ibegin + j] = static_cast<BinIdxType>(idx - offsets[j]);
++hit_count_tloc_[tid * nbins + idx];
}
}
}
template void GHistIndexMatrix::SetIndexDataForDense(common::Span<uint8_t> index_data_span,
size_t batch_threads, const SparsePage& batch,
size_t rbegin,
common::Span<const uint32_t> offsets_span,
size_t nbins);
template void GHistIndexMatrix::SetIndexDataForDense(common::Span<uint16_t> index_data_span,
size_t batch_threads, const SparsePage& batch,
size_t rbegin,
common::Span<const uint32_t> offsets_span,
size_t nbins);
template void GHistIndexMatrix::SetIndexDataForDense(common::Span<uint32_t> index_data_span,
size_t batch_threads, const SparsePage& batch,
size_t rbegin,
common::Span<const uint32_t> offsets_span,
size_t nbins);
void GHistIndexMatrix::SetIndexDataForSparse(common::Span<uint32_t> index_data_span,
size_t batch_threads,
const SparsePage& batch, size_t rbegin,
size_t nbins) {
const xgboost::Entry* data_ptr = batch.data.HostVector().data();
const std::vector<bst_row_t>& offset_vec = batch.offset.HostVector();
const size_t batch_size = batch.Size();
CHECK_LT(batch_size, offset_vec.size());
uint32_t* index_data = index_data_span.data();
#pragma omp parallel for num_threads(batch_threads) schedule(static)
for (omp_ulong i = 0; i < batch_size; ++i) {
const int tid = omp_get_thread_num();
size_t ibegin = row_ptr[rbegin + i];
size_t iend = row_ptr[rbegin + i + 1];
const size_t size = offset_vec[i + 1] - offset_vec[i];
SparsePage::Inst inst = {data_ptr + offset_vec[i], size};
CHECK_EQ(ibegin + inst.size(), iend);
for (bst_uint j = 0; j < inst.size(); ++j) {
uint32_t idx = cut.SearchBin(inst[j]);
index_data[ibegin + j] = idx;
++hit_count_tloc_[tid * nbins + idx];
}
}
}
void GHistIndexMatrix::ResizeIndex(const size_t rbegin, const SparsePage& batch,
const size_t n_offsets, const size_t n_index,
const bool isDense) {
if ((max_num_bins_ - 1 <= static_cast<int>(std::numeric_limits<uint8_t>::max())) && isDense) {
index.setBinTypeSize(UINT8_BINS_TYPE_SIZE);
index.resize((sizeof(uint8_t)) * n_index);
} else if ((max_num_bins_ - 1 > static_cast<int>(std::numeric_limits<uint8_t>::max()) &&
max_num_bins_ - 1 <= static_cast<int>(std::numeric_limits<uint16_t>::max())) && isDense) {
index.setBinTypeSize(UINT16_BINS_TYPE_SIZE);
index.resize((sizeof(uint16_t)) * n_index);
} else {
index.setBinTypeSize(UINT32_BINS_TYPE_SIZE);
index.resize((sizeof(uint32_t)) * n_index);
}
}
HistogramCuts::HistogramCuts() {
monitor_.Init(__FUNCTION__);
cut_ptrs_.HostVector().emplace_back(0);
@ -260,7 +343,7 @@ void DenseCuts::Build(DMatrix* p_fmat, uint32_t max_num_bins) {
size_t const num_groups = group_ptr.size() == 0 ? 0 : group_ptr.size() - 1;
// Use group index for weights?
bool const use_group = UseGroup(p_fmat);
const bool isDense = p_fmat->IsDense();
for (const auto &batch : p_fmat->GetBatches<SparsePage>()) {
size_t group_ind = 0;
if (use_group) {
@ -285,10 +368,18 @@ void DenseCuts::Build(DMatrix* p_fmat, uint32_t max_num_bins) {
// move to next group
group_ind++;
}
for (auto const& entry : inst) {
if (entry.index >= begin && entry.index < end) {
size_t w_idx = use_group ? group_ind : ridx;
sketchs[entry.index].Push(entry.fvalue, info.GetWeight(w_idx));
size_t w_idx = use_group ? group_ind : ridx;
auto w = info.GetWeight(w_idx);
if (isDense) {
auto data = inst.data();
for (size_t ii = begin; ii < end; ii++) {
sketchs[ii].Push(data[ii].fvalue, w);
}
} else {
for (auto const& entry : inst) {
if (entry.index >= begin && entry.index < end) {
sketchs[entry.index].Push(entry.fvalue, w);
}
}
}
}
@ -360,12 +451,13 @@ void DenseCuts::Init
void GHistIndexMatrix::Init(DMatrix* p_fmat, int max_num_bins) {
cut.Build(p_fmat, max_num_bins);
max_num_bins_ = max_num_bins;
const int32_t nthread = omp_get_max_threads();
const uint32_t nbins = cut.Ptrs().back();
hit_count.resize(nbins, 0);
hit_count_tloc_.resize(nthread * nbins, 0);
this->p_fmat_ = p_fmat;
size_t new_size = 1;
for (const auto &batch : p_fmat->GetBatches<SparsePage>()) {
new_size += batch.Size();
@ -376,6 +468,8 @@ void GHistIndexMatrix::Init(DMatrix* p_fmat, int max_num_bins) {
size_t rbegin = 0;
size_t prev_sum = 0;
const bool isDense = p_fmat->IsDense();
this->isDense_ = isDense;
for (const auto &batch : p_fmat->GetBatches<SparsePage>()) {
// The number of threads is pegged to the batch size. If the OMP
@ -422,25 +516,41 @@ void GHistIndexMatrix::Init(DMatrix* p_fmat, int max_num_bins) {
}
}
index.resize(row_ptr[rbegin + batch.Size()]);
const size_t n_offsets = cut.Ptrs().size() - 1;
const size_t n_index = row_ptr[rbegin + batch.Size()];
ResizeIndex(rbegin, batch, n_offsets, n_index, isDense);
CHECK_GT(cut.Values().size(), 0U);
#pragma omp parallel for num_threads(batch_threads) schedule(static)
for (omp_ulong i = 0; i < batch.Size(); ++i) { // NOLINT(*)
const int tid = omp_get_thread_num();
size_t ibegin = row_ptr[rbegin + i];
size_t iend = row_ptr[rbegin + i + 1];
SparsePage::Inst inst = batch[i];
CHECK_EQ(ibegin + inst.size(), iend);
for (bst_uint j = 0; j < inst.size(); ++j) {
uint32_t idx = cut.SearchBin(inst[j]);
index[ibegin + j] = idx;
++hit_count_tloc_[tid * nbins + idx];
uint32_t* offsets = nullptr;
if (isDense) {
index.resizeOffset(n_offsets);
offsets = index.offset();
for (size_t i = 0; i < n_offsets; ++i) {
offsets[i] = cut.Ptrs()[i];
}
std::sort(index.begin() + ibegin, index.begin() + iend);
}
if (isDense) {
BinTypeSize curent_bin_size = index.getBinTypeSize();
common::Span<const uint32_t> offsets_span = {offsets, n_offsets};
if (curent_bin_size == UINT8_BINS_TYPE_SIZE) {
common::Span<uint8_t> index_data_span = {index.data<uint8_t>(), n_index};
SetIndexDataForDense(index_data_span, batch_threads, batch, rbegin, offsets_span, nbins);
} else if (curent_bin_size == UINT16_BINS_TYPE_SIZE) {
common::Span<uint16_t> index_data_span = {index.data<uint16_t>(), n_index};
SetIndexDataForDense(index_data_span, batch_threads, batch, rbegin, offsets_span, nbins);
} else {
CHECK_EQ(curent_bin_size, UINT32_BINS_TYPE_SIZE);
common::Span<uint32_t> index_data_span = {index.data<uint32_t>(), n_index};
SetIndexDataForDense(index_data_span, batch_threads, batch, rbegin, offsets_span, nbins);
}
/* For sparse DMatrix we have to store index of feature for each bin
in index field to chose right offset. So offset is nullptr and index is not reduced */
} else {
common::Span<uint32_t> index_data_span = {index.data<uint32_t>(), n_index};
SetIndexDataForSparse(index_data_span, batch_threads, batch, rbegin, nbins);
}
#pragma omp parallel for num_threads(nthread) schedule(static)
@ -456,13 +566,16 @@ void GHistIndexMatrix::Init(DMatrix* p_fmat, int max_num_bins) {
}
}
template <typename BinIdxType>
static size_t GetConflictCount(const std::vector<bool>& mark,
const Column& column,
const Column<BinIdxType>& column_input,
size_t max_cnt) {
size_t ret = 0;
if (column.GetType() == xgboost::common::kDenseColumn) {
if (column_input.GetType() == xgboost::common::kDenseColumn) {
const DenseColumn<BinIdxType>& column
= static_cast<const DenseColumn<BinIdxType>& >(column_input);
for (size_t i = 0; i < column.Size(); ++i) {
if (column.GetFeatureBinIdx(i) != std::numeric_limits<uint32_t>::max() && mark[i]) {
if ((!column.IsMissing(i)) && mark[i]) {
++ret;
if (ret > max_cnt) {
return max_cnt + 1;
@ -470,6 +583,8 @@ static size_t GetConflictCount(const std::vector<bool>& mark,
}
}
} else {
const SparseColumn<BinIdxType>& column
= static_cast<const SparseColumn<BinIdxType>& >(column_input);
for (size_t i = 0; i < column.Size(); ++i) {
if (mark[column.GetRowIdx(i)]) {
++ret;
@ -482,22 +597,64 @@ static size_t GetConflictCount(const std::vector<bool>& mark,
return ret;
}
template <typename BinIdxType>
inline void
MarkUsed(std::vector<bool>* p_mark, const Column& column) {
MarkUsed(std::vector<bool>* p_mark, const Column<BinIdxType>& column_input) {
std::vector<bool>& mark = *p_mark;
if (column.GetType() == xgboost::common::kDenseColumn) {
if (column_input.GetType() == xgboost::common::kDenseColumn) {
const DenseColumn<BinIdxType>& column
= static_cast<const DenseColumn<BinIdxType>& >(column_input);
for (size_t i = 0; i < column.Size(); ++i) {
if (column.GetFeatureBinIdx(i) != std::numeric_limits<uint32_t>::max()) {
if (!column.IsMissing(i)) {
mark[i] = true;
}
}
} else {
const SparseColumn<BinIdxType>& column
= static_cast<const SparseColumn<BinIdxType>& >(column_input);
for (size_t i = 0; i < column.Size(); ++i) {
mark[column.GetRowIdx(i)] = true;
}
}
}
template <typename BinIdxType>
inline void SetGroup(const unsigned fid, const Column<BinIdxType>& column,
const size_t max_conflict_cnt, const std::vector<size_t>& search_groups,
std::vector<size_t>* p_group_conflict_cnt,
std::vector<std::vector<bool>>* p_conflict_marks,
std::vector<std::vector<unsigned>>* p_groups,
std::vector<size_t>* p_group_nnz, const size_t cur_fid_nnz, const size_t nrow) {
bool need_new_group = true;
std::vector<size_t>& group_conflict_cnt = *p_group_conflict_cnt;
std::vector<std::vector<bool>>& conflict_marks = *p_conflict_marks;
std::vector<std::vector<unsigned>>& groups = *p_groups;
std::vector<size_t>& group_nnz = *p_group_nnz;
// examine each candidate group: is it okay to insert fid?
for (auto gid : search_groups) {
const size_t rest_max_cnt = max_conflict_cnt - group_conflict_cnt[gid];
const size_t cnt = GetConflictCount(conflict_marks[gid], column, rest_max_cnt);
if (cnt <= rest_max_cnt) {
need_new_group = false;
groups[gid].push_back(fid);
group_conflict_cnt[gid] += cnt;
group_nnz[gid] += cur_fid_nnz - cnt;
MarkUsed(&conflict_marks[gid], column);
break;
}
}
// create new group if necessary
if (need_new_group) {
groups.emplace_back();
groups.back().push_back(fid);
group_conflict_cnt.push_back(0);
conflict_marks.emplace_back(nrow, false);
MarkUsed(&conflict_marks.back(), column);
group_nnz.emplace_back(cur_fid_nnz);
}
}
inline std::vector<std::vector<unsigned>>
FindGroups(const std::vector<unsigned>& feature_list,
const std::vector<size_t>& feature_nnz,
@ -517,10 +674,7 @@ FindGroups(const std::vector<unsigned>& feature_list,
= static_cast<size_t>(param.max_conflict_rate * nrow);
for (auto fid : feature_list) {
const Column& column = colmat.GetColumn(fid);
const size_t cur_fid_nnz = feature_nnz[fid];
bool need_new_group = true;
// randomly choose some of existing groups as candidates
std::vector<size_t> search_groups;
@ -534,31 +688,22 @@ FindGroups(const std::vector<unsigned>& feature_list,
search_groups.resize(param.max_search_group);
}
// examine each candidate group: is it okay to insert fid?
for (auto gid : search_groups) {
const size_t rest_max_cnt = max_conflict_cnt - group_conflict_cnt[gid];
const size_t cnt = GetConflictCount(conflict_marks[gid], column, rest_max_cnt);
if (cnt <= rest_max_cnt) {
need_new_group = false;
groups[gid].push_back(fid);
group_conflict_cnt[gid] += cnt;
group_nnz[gid] += cur_fid_nnz - cnt;
MarkUsed(&conflict_marks[gid], column);
break;
}
}
// create new group if necessary
if (need_new_group) {
groups.emplace_back();
groups.back().push_back(fid);
group_conflict_cnt.push_back(0);
conflict_marks.emplace_back(nrow, false);
MarkUsed(&conflict_marks.back(), column);
group_nnz.emplace_back(cur_fid_nnz);
BinTypeSize bins_type_size = colmat.GetTypeSize();
if (bins_type_size == UINT8_BINS_TYPE_SIZE) {
const auto column = colmat.GetColumn<uint8_t>(fid);
SetGroup(fid, *(column.get()), max_conflict_cnt, search_groups,
&group_conflict_cnt, &conflict_marks, &groups, &group_nnz, cur_fid_nnz, nrow);
} else if (bins_type_size == UINT16_BINS_TYPE_SIZE) {
const auto column = colmat.GetColumn<uint16_t>(fid);
SetGroup(fid, *(column.get()), max_conflict_cnt, search_groups,
&group_conflict_cnt, &conflict_marks, &groups, &group_nnz, cur_fid_nnz, nrow);
} else {
CHECK_EQ(bins_type_size, UINT32_BINS_TYPE_SIZE);
const auto column = colmat.GetColumn<uint32_t>(fid);
SetGroup(fid, *(column.get()), max_conflict_cnt, search_groups,
&group_conflict_cnt, &conflict_marks, &groups, &group_nnz, cur_fid_nnz, nrow);
}
}
return groups;
}
@ -640,6 +785,7 @@ void GHistIndexBlockMatrix::Init(const GHistIndexMatrix& gmat,
}
}
}
std::vector<std::vector<uint32_t>> index_temp(nblock);
std::vector<std::vector<size_t>> row_ptr_temp(nblock);
for (uint32_t block_id = 0; block_id < nblock; ++block_id) {
@ -733,8 +879,6 @@ struct Prefetch {
public:
static constexpr size_t kCacheLineSize = 64;
static constexpr size_t kPrefetchOffset = 10;
static constexpr size_t kPrefetchStep =
kCacheLineSize / sizeof(decltype(GHistIndexMatrix::index)::value_type);
private:
static constexpr size_t kNoPrefetchSize =
@ -745,11 +889,17 @@ struct Prefetch {
static size_t NoPrefetchSize(size_t rows) {
return std::min(rows, kNoPrefetchSize);
}
template <typename T>
static constexpr size_t GetPrefetchStep() {
return Prefetch::kCacheLineSize / sizeof(T);
}
};
constexpr size_t Prefetch::kNoPrefetchSize;
template<typename FPType, bool do_prefetch>
template<typename FPType, bool do_prefetch, typename BinIdxType>
void BuildHistDenseKernel(const std::vector<GradientPair>& gpair,
const RowSetCollection::Elem row_indices,
const GHistIndexMatrix& gmat,
@ -758,9 +908,9 @@ void BuildHistDenseKernel(const std::vector<GradientPair>& gpair,
const size_t size = row_indices.Size();
const size_t* rid = row_indices.begin;
const float* pgh = reinterpret_cast<const float*>(gpair.data());
const uint32_t* gradient_index = gmat.index.data();
const BinIdxType* gradient_index = gmat.index.data<BinIdxType>();
const uint32_t* offsets = gmat.index.offset();
FPType* hist_data = reinterpret_cast<FPType*>(hist.data());
const uint32_t two {2}; // Each element from 'gpair' and 'hist' contains
// 2 FP values: gradient and hessian.
// So we need to multiply each row-index/bin-index by 2
@ -775,13 +925,14 @@ void BuildHistDenseKernel(const std::vector<GradientPair>& gpair,
PREFETCH_READ_T0(pgh + two * rid[i + Prefetch::kPrefetchOffset]);
for (size_t j = icol_start_prefetch; j < icol_start_prefetch + n_features;
j += Prefetch::kPrefetchStep) {
j += Prefetch::GetPrefetchStep<BinIdxType>()) {
PREFETCH_READ_T0(gradient_index + j);
}
}
for (size_t j = icol_start; j < icol_start + n_features; ++j) {
const uint32_t idx_bin = two * gradient_index[j];
const BinIdxType* gr_index_local = gradient_index + icol_start;
for (size_t j = 0; j < n_features; ++j) {
const uint32_t idx_bin = two * (static_cast<uint32_t>(gr_index_local[j]) +
offsets[j]);
hist_data[idx_bin] += pgh[idx_gh];
hist_data[idx_bin+1] += pgh[idx_gh+1];
@ -797,10 +948,9 @@ void BuildHistSparseKernel(const std::vector<GradientPair>& gpair,
const size_t size = row_indices.Size();
const size_t* rid = row_indices.begin;
const float* pgh = reinterpret_cast<const float*>(gpair.data());
const uint32_t* gradient_index = gmat.index.data();
const uint32_t* gradient_index = gmat.index.data<uint32_t>();
const size_t* row_ptr = gmat.row_ptr.data();
FPType* hist_data = reinterpret_cast<FPType*>(hist.data());
const uint32_t two {2}; // Each element from 'gpair' and 'hist' contains
// 2 FP values: gradient and hessian.
// So we need to multiply each row-index/bin-index by 2
@ -816,11 +966,11 @@ void BuildHistSparseKernel(const std::vector<GradientPair>& gpair,
const size_t icol_end_prefect = row_ptr[rid[i+Prefetch::kPrefetchOffset]+1];
PREFETCH_READ_T0(pgh + two * rid[i + Prefetch::kPrefetchOffset]);
for (size_t j = icol_start_prftch; j < icol_end_prefect; j+=Prefetch::kPrefetchStep) {
for (size_t j = icol_start_prftch; j < icol_end_prefect;
j+=Prefetch::GetPrefetchStep<uint32_t>()) {
PREFETCH_READ_T0(gradient_index + j);
}
}
for (size_t j = icol_start; j < icol_end; ++j) {
const uint32_t idx_bin = two * gradient_index[j];
hist_data[idx_bin] += pgh[idx_gh];
@ -829,16 +979,42 @@ void BuildHistSparseKernel(const std::vector<GradientPair>& gpair,
}
}
template<typename FPType, bool do_prefetch, typename BinIdxType>
void BuildHistDispatchKernel(const std::vector<GradientPair>& gpair,
const RowSetCollection::Elem row_indices,
const GHistIndexMatrix& gmat, GHistRow hist, bool isDense) {
if (isDense) {
const size_t* row_ptr = gmat.row_ptr.data();
const size_t n_features = row_ptr[row_indices.begin[0]+1] - row_ptr[row_indices.begin[0]];
BuildHistDenseKernel<FPType, do_prefetch, BinIdxType>(gpair, row_indices,
gmat, n_features, hist);
} else {
BuildHistSparseKernel<FPType, do_prefetch>(gpair, row_indices,
gmat, hist);
}
}
template<typename FPType, bool do_prefetch>
void BuildHistKernel(const std::vector<GradientPair>& gpair,
const RowSetCollection::Elem row_indices,
const GHistIndexMatrix& gmat, const bool isDense, GHistRow hist) {
if (row_indices.Size() && isDense) {
const size_t* row_ptr = gmat.row_ptr.data();
const size_t n_features = row_ptr[row_indices.begin[0]+1] - row_ptr[row_indices.begin[0]];
BuildHistDenseKernel<FPType, do_prefetch>(gpair, row_indices, gmat, n_features, hist);
} else {
BuildHistSparseKernel<FPType, do_prefetch>(gpair, row_indices, gmat, hist);
const bool is_dense = row_indices.Size() && isDense;
switch (gmat.index.getBinTypeSize()) {
case UINT8_BINS_TYPE_SIZE:
BuildHistDispatchKernel<FPType, do_prefetch, uint8_t>(gpair, row_indices,
gmat, hist, is_dense);
break;
case UINT16_BINS_TYPE_SIZE:
BuildHistDispatchKernel<FPType, do_prefetch, uint16_t>(gpair, row_indices,
gmat, hist, is_dense);
break;
case UINT32_BINS_TYPE_SIZE:
BuildHistDispatchKernel<FPType, do_prefetch, uint32_t>(gpair, row_indices,
gmat, hist, is_dense);
break;
default:
CHECK(false); // no default behavior
}
}
@ -875,7 +1051,6 @@ void GHistBuilder::BuildBlockHist(const std::vector<GradientPair>& gpair,
const size_t nblock = gmatb.GetNumBlock();
const size_t nrows = row_indices.end - row_indices.begin;
const size_t rest = nrows % kUnroll;
#if defined(_OPENMP)
const auto nthread = static_cast<bst_omp_uint>(this->nthread_); // NOLINT
#endif // defined(_OPENMP)

View File

@ -209,6 +209,101 @@ HistogramCuts AdapterDeviceSketch(AdapterT* adapter, int num_bins,
float missing,
size_t sketch_batch_num_elements = 0);
enum BinTypeSize {
UINT8_BINS_TYPE_SIZE = 1,
UINT16_BINS_TYPE_SIZE = 2,
UINT32_BINS_TYPE_SIZE = 4
};
struct Index {
Index(): binTypeSize_(UINT8_BINS_TYPE_SIZE), p_(1), offset_ptr_(nullptr) {
setBinTypeSize(binTypeSize_);
}
Index(const Index& i) = delete;
Index& operator=(Index i) = delete;
Index(Index&& i) = delete;
Index& operator=(Index&& i) = delete;
uint32_t operator[](size_t i) const {
if (offset_ptr_ != nullptr) {
return func_(data_ptr_, i) + offset_ptr_[i%p_];
} else {
return func_(data_ptr_, i);
}
}
void setBinTypeSize(BinTypeSize binTypeSize) {
binTypeSize_ = binTypeSize;
switch (binTypeSize) {
case UINT8_BINS_TYPE_SIZE:
func_ = &getValueFromUint8;
break;
case UINT16_BINS_TYPE_SIZE:
func_ = &getValueFromUint16;
break;
case UINT32_BINS_TYPE_SIZE:
func_ = &getValueFromUint32;
break;
default:
CHECK(binTypeSize == UINT8_BINS_TYPE_SIZE ||
binTypeSize == UINT16_BINS_TYPE_SIZE ||
binTypeSize == UINT32_BINS_TYPE_SIZE);
}
}
BinTypeSize getBinTypeSize() const {
return binTypeSize_;
}
template<typename T>
T* data() const {
return static_cast<T*>(data_ptr_);
}
uint32_t* offset() const {
return offset_ptr_;
}
size_t offsetSize() const {
return offset_.size();
}
size_t size() const {
return data_.size() / (binTypeSize_);
}
void resize(const size_t nBytesData) {
data_.resize(nBytesData);
data_ptr_ = reinterpret_cast<void*>(data_.data());
}
void resizeOffset(const size_t nDisps) {
offset_.resize(nDisps);
offset_ptr_ = offset_.data();
p_ = nDisps;
}
std::vector<uint8_t>::const_iterator begin() const {
return data_.begin();
}
std::vector<uint8_t>::const_iterator end() const {
return data_.end();
}
private:
static uint32_t getValueFromUint8(void *t, size_t i) {
return reinterpret_cast<uint8_t*>(t)[i];
}
static uint32_t getValueFromUint16(void* t, size_t i) {
return reinterpret_cast<uint16_t*>(t)[i];
}
static uint32_t getValueFromUint32(void* t, size_t i) {
return reinterpret_cast<uint32_t*>(t)[i];
}
typedef uint32_t (*Func)(void*, size_t);
std::vector<uint8_t> data_;
std::vector<uint32_t> offset_; // size of this field is equal to number of features
void* data_ptr_;
uint32_t* offset_ptr_;
size_t p_;
BinTypeSize binTypeSize_;
Func func_;
};
/*!
* \brief preprocessed global index matrix, in CSR format
*
@ -219,19 +314,31 @@ struct GHistIndexMatrix {
/*! \brief row pointer to rows by element position */
std::vector<size_t> row_ptr;
/*! \brief The index data */
std::vector<uint32_t> index;
Index index;
/*! \brief hit count of each index */
std::vector<size_t> hit_count;
/*! \brief The corresponding cuts */
HistogramCuts cut;
DMatrix* p_fmat_;
size_t max_num_bins_;
// Create a global histogram matrix, given cut
void Init(DMatrix* p_fmat, int max_num_bins);
// get i-th row
inline GHistIndexRow operator[](size_t i) const {
return {&index[0] + row_ptr[i],
static_cast<GHistIndexRow::index_type>(
row_ptr[i + 1] - row_ptr[i])};
}
template<typename BinIdxType>
void SetIndexDataForDense(common::Span<BinIdxType> index_data_span,
size_t batch_threads, const SparsePage& batch,
size_t rbegin, common::Span<const uint32_t> offsets_span,
size_t nbins);
// specific method for sparse data as no posibility to reduce allocated memory
void SetIndexDataForSparse(common::Span<uint32_t> index_data_span,
size_t batch_threads, const SparsePage& batch,
size_t rbegin, size_t nbins);
void ResizeIndex(const size_t rbegin, const SparsePage& batch,
const size_t n_offsets, const size_t n_index,
const bool isDense);
inline void GetFeatureCounts(size_t* counts) const {
auto nfeature = cut.Ptrs().size() - 1;
for (unsigned fid = 0; fid < nfeature; ++fid) {
@ -242,9 +349,13 @@ struct GHistIndexMatrix {
}
}
}
inline bool IsDense() const {
return isDense_;
}
private:
std::vector<size_t> hit_count_tloc_;
bool isDense_;
};
struct GHistIndexBlock {

View File

@ -30,7 +30,6 @@
#include "../common/column_matrix.h"
#include "../common/threading_utils.h"
namespace xgboost {
namespace tree {
@ -58,6 +57,7 @@ void QuantileHistMaker::Update(HostDeviceVector<GradientPair> *gpair,
if (dmat != p_last_dmat_ || is_gmat_initialized_ == false) {
gmat_.Init(dmat, static_cast<uint32_t>(param_.max_bin));
column_matrix_.Init(gmat_, param_.sparse_threshold);
if (param_.enable_feature_grouping > 0) {
gmatb_.Init(gmat_, column_matrix_, param_);
}
@ -184,7 +184,6 @@ void QuantileHistMaker::Builder::BuildLocalHistograms(
builder_monitor_.Start("BuildLocalHistograms");
const size_t n_nodes = nodes_for_explicit_hist_build_.size();
// create space of size (# rows in each node)
common::BlockedSpace2d space(n_nodes, [&](size_t node) {
const int32_t nid = nodes_for_explicit_hist_build_[node].nid;
@ -292,7 +291,6 @@ void QuantileHistMaker::Builder::EvaluateAndApplySplits(
std::vector<ExpandEntry> nodes_for_apply_split;
AddSplitsToTree(gmat, p_tree, num_leaves, depth, timestamp,
&nodes_for_apply_split, temp_qexpand_depth);
ApplySplit(nodes_for_apply_split, gmat, column_matrix, hist_, p_tree);
}
@ -777,69 +775,66 @@ void QuantileHistMaker::Builder::EvaluateSplits(const std::vector<ExpandEntry>&
// on comparison of indexes values (idx_span) and split point (split_cond)
// Handle dense columns
// Analog of std::stable_partition, but in no-inplace manner
template <bool default_left>
inline std::pair<size_t, size_t> PartitionDenseKernel(
common::Span<const size_t> rid_span, common::Span<const uint32_t> idx_span,
const int32_t split_cond, const uint32_t offset,
template <bool default_left, typename BinIdxType>
inline std::pair<size_t, size_t> PartitionDenseKernel(const common::DenseColumn<BinIdxType>& column,
common::Span<const size_t> rid_span, const int32_t split_cond,
common::Span<size_t> left_part, common::Span<size_t> right_part) {
const uint32_t* idx = idx_span.data();
const int32_t offset = column.GetBaseIdx();
const BinIdxType* idx = column.GetFeatureBinIdxPtr().data();
size_t* p_left_part = left_part.data();
size_t* p_right_part = right_part.data();
size_t nleft_elems = 0;
size_t nright_elems = 0;
const uint32_t missing_val = std::numeric_limits<uint32_t>::max();
for (auto rid : rid_span) {
if (idx[rid] == missing_val) {
if (column.IsMissing(rid)) {
if (default_left) {
p_left_part[nleft_elems++] = rid;
} else {
p_right_part[nright_elems++] = rid;
}
} else {
if (static_cast<int32_t>(idx[rid] + offset) <= split_cond) {
if ((static_cast<int32_t>(idx[rid]) + offset) <= split_cond) {
p_left_part[nleft_elems++] = rid;
} else {
p_right_part[nright_elems++] = rid;
}
}
}
return {nleft_elems, nright_elems};
}
// Split row indexes (rid_span) to 2 parts (left_part, right_part) depending
// on comparison of indexes values (idx_span) and split point (split_cond).
// Handle sparse columns
template<bool default_left>
template<bool default_left, typename BinIdxType>
inline std::pair<size_t, size_t> PartitionSparseKernel(
common::Span<const size_t> rid_span, const int32_t split_cond, const Column& column,
common::Span<size_t> left_part, common::Span<size_t> right_part) {
common::Span<const size_t> rid_span, const int32_t split_cond,
const common::SparseColumn<BinIdxType>& column, common::Span<size_t> left_part,
common::Span<size_t> right_part) {
size_t* p_left_part = left_part.data();
size_t* p_right_part = right_part.data();
size_t nleft_elems = 0;
size_t nright_elems = 0;
const size_t* row_data = column.GetRowData();
const size_t column_size = column.Size();
if (rid_span.size()) { // ensure that rid_span is nonempty range
// search first nonzero row with index >= rid_span.front()
const size_t* p = std::lower_bound(column.GetRowData(),
column.GetRowData() + column.Size(),
const size_t* p = std::lower_bound(row_data, row_data + column_size,
rid_span.front());
if (p != column.GetRowData() + column.Size() && *p <= rid_span.back()) {
size_t cursor = p - column.GetRowData();
if (p != row_data + column_size && *p <= rid_span.back()) {
size_t cursor = p - row_data;
for (auto rid : rid_span) {
while (cursor < column.Size()
while (cursor < column_size
&& column.GetRowIdx(cursor) < rid
&& column.GetRowIdx(cursor) <= rid_span.back()) {
++cursor;
}
if (cursor < column.Size() && column.GetRowIdx(cursor) == rid) {
const uint32_t rbin = column.GetFeatureBinIdx(cursor);
if (static_cast<int32_t>(rbin + column.GetBaseIdx()) <= split_cond) {
if (cursor < column_size && column.GetRowIdx(cursor) == rid) {
if (static_cast<int32_t>(column.GetGlobalBinIdx(cursor)) <= split_cond) {
p_left_part[nleft_elems++] = rid;
} else {
p_right_part[nright_elems++] = rid;
@ -868,10 +863,10 @@ inline std::pair<size_t, size_t> PartitionSparseKernel(
return {nleft_elems, nright_elems};
}
template <typename BinIdxType>
void QuantileHistMaker::Builder::PartitionKernel(
const size_t node_in_set, const size_t nid, common::Range1d range,
const int32_t split_cond, const ColumnMatrix& column_matrix,
const GHistIndexMatrix& gmat, const RegTree& tree) {
const int32_t split_cond, const ColumnMatrix& column_matrix, const RegTree& tree) {
const size_t* rid = row_set_collection_[nid].begin;
common::Span<const size_t> rid_span(rid + range.begin(), rid + range.end());
common::Span<size_t> left = partition_builder_.GetLeftBuffer(node_in_set,
@ -880,21 +875,21 @@ void QuantileHistMaker::Builder::PartitionKernel(
range.begin(), range.end());
const bst_uint fid = tree[nid].SplitIndex();
const bool default_left = tree[nid].DefaultLeft();
const auto column = column_matrix.GetColumn(fid);
const uint32_t offset = column.GetBaseIdx();
common::Span<const uint32_t> idx_spin = column.GetFeatureBinIdxPtr();
const auto column_ptr = column_matrix.GetColumn<BinIdxType>(fid);
std::pair<size_t, size_t> child_nodes_sizes;
if (column.GetType() == xgboost::common::kDenseColumn) {
if (column_ptr->GetType() == xgboost::common::kDenseColumn) {
const common::DenseColumn<BinIdxType>& column =
static_cast<const common::DenseColumn<BinIdxType>& >(*(column_ptr.get()));
if (default_left) {
child_nodes_sizes = PartitionDenseKernel<true>(
rid_span, idx_spin, split_cond, offset, left, right);
child_nodes_sizes = PartitionDenseKernel<true>(column, rid_span, split_cond, left, right);
} else {
child_nodes_sizes = PartitionDenseKernel<false>(
rid_span, idx_spin, split_cond, offset, left, right);
child_nodes_sizes = PartitionDenseKernel<false>(column, rid_span, split_cond, left, right);
}
} else {
const common::SparseColumn<BinIdxType>& column
= static_cast<const common::SparseColumn<BinIdxType>& >(*(column_ptr.get()));
if (default_left) {
child_nodes_sizes = PartitionSparseKernel<true>(rid_span, split_cond, column, left, right);
} else {
@ -982,9 +977,23 @@ void QuantileHistMaker::Builder::ApplySplit(const std::vector<ExpandEntry> nodes
// Store results in intermediate buffers from partition_builder_
common::ParallelFor2d(space, this->nthread_, [&](size_t node_in_set, common::Range1d r) {
const int32_t nid = nodes[node_in_set].nid;
PartitionKernel(node_in_set, nid, r,
split_conditions[node_in_set], column_matrix, gmat, *p_tree);
});
switch (column_matrix.GetTypeSize()) {
case common::UINT8_BINS_TYPE_SIZE:
PartitionKernel<uint8_t>(node_in_set, nid, r,
split_conditions[node_in_set], column_matrix, *p_tree);
break;
case common::UINT16_BINS_TYPE_SIZE:
PartitionKernel<uint16_t>(node_in_set, nid, r,
split_conditions[node_in_set], column_matrix, *p_tree);
break;
case common::UINT32_BINS_TYPE_SIZE:
PartitionKernel<uint32_t>(node_in_set, nid, r,
split_conditions[node_in_set], column_matrix, *p_tree);
break;
default:
CHECK(false); // no default behavior
}
});
// 3. Compute offsets to copy blocks of row-indexes
// from partition_builder_ to row_set_collection_

View File

@ -212,10 +212,10 @@ class QuantileHistMaker: public TreeUpdater {
const HistCollection& hist,
RegTree* p_tree);
template <typename BinIdxType>
void PartitionKernel(const size_t node_in_set, const size_t nid, common::Range1d range,
const int32_t split_cond,
const ColumnMatrix& column_matrix, const GHistIndexMatrix& gmat,
const RegTree& tree);
const ColumnMatrix& column_matrix, const RegTree& tree);
void AddSplitsToRowSet(const std::vector<ExpandEntry>& nodes, RegTree* p_tree);

View File

@ -9,28 +9,46 @@ namespace xgboost {
namespace common {
TEST(DenseColumn, Test) {
auto dmat = RandomDataGenerator(100, 10, 0.0).GenerateDMatix();
GHistIndexMatrix gmat;
gmat.Init(dmat.get(), 256);
ColumnMatrix column_matrix;
column_matrix.Init(gmat, 0.2);
uint64_t max_num_bins[] = {static_cast<uint64_t>(std::numeric_limits<uint8_t>::max()) + 1,
static_cast<uint64_t>(std::numeric_limits<uint16_t>::max()) + 1,
static_cast<uint64_t>(std::numeric_limits<uint16_t>::max()) + 2};
for (size_t max_num_bin : max_num_bins) {
auto dmat = RandomDataGenerator(100, 10, 0.0).GenerateDMatix();
GHistIndexMatrix gmat;
gmat.Init(dmat.get(), max_num_bin);
ColumnMatrix column_matrix;
column_matrix.Init(gmat, 0.2);
for (auto i = 0ull; i < dmat->Info().num_row_; i++) {
for (auto j = 0ull; j < dmat->Info().num_col_; j++) {
auto col = column_matrix.GetColumn(j);
ASSERT_EQ(gmat.index[i * dmat->Info().num_col_ + j],
col.GetGlobalBinIdx(i));
for (auto i = 0ull; i < dmat->Info().num_row_; i++) {
for (auto j = 0ull; j < dmat->Info().num_col_; j++) {
switch (column_matrix.GetTypeSize()) {
case UINT8_BINS_TYPE_SIZE: {
auto col = column_matrix.GetColumn<uint8_t>(j);
ASSERT_EQ(gmat.index[i * dmat->Info().num_col_ + j],
(*col.get()).GetGlobalBinIdx(i));
}
break;
case UINT16_BINS_TYPE_SIZE: {
auto col = column_matrix.GetColumn<uint16_t>(j);
ASSERT_EQ(gmat.index[i * dmat->Info().num_col_ + j],
(*col.get()).GetGlobalBinIdx(i));
}
break;
case UINT32_BINS_TYPE_SIZE: {
auto col = column_matrix.GetColumn<uint32_t>(j);
ASSERT_EQ(gmat.index[i * dmat->Info().num_col_ + j],
(*col.get()).GetGlobalBinIdx(i));
}
break;
}
}
}
}
}
TEST(SparseColumn, Test) {
auto dmat = RandomDataGenerator(100, 1, 0.85).GenerateDMatix();
GHistIndexMatrix gmat;
gmat.Init(dmat.get(), 256);
ColumnMatrix column_matrix;
column_matrix.Init(gmat, 0.5);
auto col = column_matrix.GetColumn(0);
template<typename BinIdxType>
inline void CheckSparseColumn(const Column<BinIdxType>& col_input, const GHistIndexMatrix& gmat) {
const SparseColumn<BinIdxType>& col = static_cast<const SparseColumn<BinIdxType>& >(col_input);
ASSERT_EQ(col.Size(), gmat.index.size());
for (auto i = 0ull; i < col.Size(); i++) {
ASSERT_EQ(gmat.index[gmat.row_ptr[col.GetRowIdx(i)]],
@ -38,20 +56,77 @@ TEST(SparseColumn, Test) {
}
}
TEST(DenseColumnWithMissing, Test) {
auto dmat = RandomDataGenerator(100, 1, 0.5).GenerateDMatix();
GHistIndexMatrix gmat;
gmat.Init(dmat.get(), 256);
ColumnMatrix column_matrix;
column_matrix.Init(gmat, 0.2);
auto col = column_matrix.GetColumn(0);
TEST(SparseColumn, Test) {
uint64_t max_num_bins[] = {static_cast<uint64_t>(std::numeric_limits<uint8_t>::max()) + 1,
static_cast<uint64_t>(std::numeric_limits<uint16_t>::max()) + 1,
static_cast<uint64_t>(std::numeric_limits<uint16_t>::max()) + 2};
for (size_t max_num_bin : max_num_bins) {
auto dmat = RandomDataGenerator(100, 1, 0.85).GenerateDMatix();
GHistIndexMatrix gmat;
gmat.Init(dmat.get(), max_num_bin);
ColumnMatrix column_matrix;
column_matrix.Init(gmat, 0.5);
switch (column_matrix.GetTypeSize()) {
case UINT8_BINS_TYPE_SIZE: {
auto col = column_matrix.GetColumn<uint8_t>(0);
CheckSparseColumn(*col.get(), gmat);
}
break;
case UINT16_BINS_TYPE_SIZE: {
auto col = column_matrix.GetColumn<uint16_t>(0);
CheckSparseColumn(*col.get(), gmat);
}
break;
case UINT32_BINS_TYPE_SIZE: {
auto col = column_matrix.GetColumn<uint32_t>(0);
CheckSparseColumn(*col.get(), gmat);
}
break;
}
}
}
template<typename BinIdxType>
inline void CheckColumWithMissingValue(const Column<BinIdxType>& col_input,
const GHistIndexMatrix& gmat) {
const DenseColumn<BinIdxType>& col = static_cast<const DenseColumn<BinIdxType>& >(col_input);
for (auto i = 0ull; i < col.Size(); i++) {
if (col.IsMissing(i)) continue;
EXPECT_EQ(gmat.index[gmat.row_ptr[col.GetRowIdx(i)]],
EXPECT_EQ(gmat.index[gmat.row_ptr[i]],
col.GetGlobalBinIdx(i));
}
}
TEST(DenseColumnWithMissing, Test) {
uint64_t max_num_bins[] = { static_cast<uint64_t>(std::numeric_limits<uint8_t>::max()) + 1,
static_cast<uint64_t>(std::numeric_limits<uint16_t>::max()) + 1,
static_cast<uint64_t>(std::numeric_limits<uint16_t>::max()) + 2 };
for (size_t max_num_bin : max_num_bins) {
auto dmat = RandomDataGenerator(100, 1, 0.5).GenerateDMatix();
GHistIndexMatrix gmat;
gmat.Init(dmat.get(), max_num_bin);
ColumnMatrix column_matrix;
column_matrix.Init(gmat, 0.2);
switch (column_matrix.GetTypeSize()) {
case UINT8_BINS_TYPE_SIZE: {
auto col = column_matrix.GetColumn<uint8_t>(0);
CheckColumWithMissingValue(*col.get(), gmat);
}
break;
case UINT16_BINS_TYPE_SIZE: {
auto col = column_matrix.GetColumn<uint16_t>(0);
CheckColumWithMissingValue(*col.get(), gmat);
}
break;
case UINT32_BINS_TYPE_SIZE: {
auto col = column_matrix.GetColumn<uint32_t>(0);
CheckColumWithMissingValue(*col.get(), gmat);
}
break;
}
}
}
void TestGHistIndexMatrixCreation(size_t nthreads) {
dmlc::TemporaryDirectory tmpdir;
std::string filename = tmpdir.path + "/big.libsvm";

View File

@ -347,5 +347,106 @@ TEST(hist_util, SparseCutsExternalMemory) {
}
}
}
TEST(hist_util, IndexBinBound) {
uint64_t bin_sizes[] = { static_cast<uint64_t>(std::numeric_limits<uint8_t>::max()) + 1,
static_cast<uint64_t>(std::numeric_limits<uint16_t>::max()) + 1,
static_cast<uint64_t>(std::numeric_limits<uint16_t>::max()) + 2 };
BinTypeSize expected_bin_type_sizes[] = {UINT8_BINS_TYPE_SIZE,
UINT16_BINS_TYPE_SIZE,
UINT32_BINS_TYPE_SIZE};
size_t constexpr kRows = 100;
size_t constexpr kCols = 10;
size_t bin_id = 0;
for (auto max_bin : bin_sizes) {
auto p_fmat = RandomDataGenerator(kRows, kCols, 0).GenerateDMatix();
common::GHistIndexMatrix hmat;
hmat.Init(p_fmat.get(), max_bin);
EXPECT_EQ(hmat.index.size(), kRows*kCols);
EXPECT_EQ(expected_bin_type_sizes[bin_id++], hmat.index.getBinTypeSize());
}
}
TEST(hist_util, SparseIndexBinBound) {
uint64_t bin_sizes[] = { static_cast<uint64_t>(std::numeric_limits<uint8_t>::max()) + 1,
static_cast<uint64_t>(std::numeric_limits<uint16_t>::max()) + 1,
static_cast<uint64_t>(std::numeric_limits<uint16_t>::max()) + 2 };
BinTypeSize expected_bin_type_sizes[] = { UINT32_BINS_TYPE_SIZE,
UINT32_BINS_TYPE_SIZE,
UINT32_BINS_TYPE_SIZE };
size_t constexpr kRows = 100;
size_t constexpr kCols = 10;
size_t bin_id = 0;
for (auto max_bin : bin_sizes) {
auto p_fmat = RandomDataGenerator(kRows, kCols, 0.2).GenerateDMatix();
common::GHistIndexMatrix hmat;
hmat.Init(p_fmat.get(), max_bin);
EXPECT_EQ(expected_bin_type_sizes[bin_id++], hmat.index.getBinTypeSize());
}
}
template <typename T>
void CheckIndexData(T* data_ptr, uint32_t* offsets,
const common::GHistIndexMatrix& hmat, size_t n_cols) {
for (size_t i = 0; i < hmat.index.size(); ++i) {
EXPECT_EQ(data_ptr[i] + offsets[i % n_cols], hmat.index[i]);
}
}
TEST(hist_util, IndexBinData) {
uint64_t constexpr kBinSizes[] = { static_cast<uint64_t>(std::numeric_limits<uint8_t>::max()) + 1,
static_cast<uint64_t>(std::numeric_limits<uint16_t>::max()) + 1,
static_cast<uint64_t>(std::numeric_limits<uint16_t>::max()) + 2 };
size_t constexpr kRows = 100;
size_t constexpr kCols = 10;
size_t bin_id = 0;
for (auto max_bin : kBinSizes) {
auto p_fmat = RandomDataGenerator(kRows, kCols, 0).GenerateDMatix();
common::GHistIndexMatrix hmat;
hmat.Init(p_fmat.get(), max_bin);
uint32_t* offsets = hmat.index.offset();
EXPECT_EQ(hmat.index.size(), kRows*kCols);
switch (max_bin) {
case kBinSizes[0]:
CheckIndexData(hmat.index.data<uint8_t>(),
offsets, hmat, kCols);
break;
case kBinSizes[1]:
CheckIndexData(hmat.index.data<uint16_t>(),
offsets, hmat, kCols);
break;
case kBinSizes[2]:
CheckIndexData(hmat.index.data<uint32_t>(),
offsets, hmat, kCols);
break;
}
}
}
TEST(hist_util, SparseIndexBinData) {
uint64_t bin_sizes[] = { static_cast<uint64_t>(std::numeric_limits<uint8_t>::max()) + 1,
static_cast<uint64_t>(std::numeric_limits<uint16_t>::max()) + 1,
static_cast<uint64_t>(std::numeric_limits<uint16_t>::max()) + 2 };
size_t constexpr kRows = 100;
size_t constexpr kCols = 10;
size_t bin_id = 0;
for (auto max_bin : bin_sizes) {
auto p_fmat = RandomDataGenerator(kRows, kCols, 0.2).GenerateDMatix();
common::GHistIndexMatrix hmat;
hmat.Init(p_fmat.get(), max_bin);
EXPECT_EQ(hmat.index.offset(), nullptr);
uint32_t* data_ptr = hmat.index.data<uint32_t>();
for (size_t i = 0; i < hmat.index.size(); ++i) {
EXPECT_EQ(data_ptr[i], hmat.index[i]);
}
}
}
} // namespace common
} // namespace xgboost