add requirments

This commit is contained in:
tqchen 2015-07-23 22:22:52 -07:00
parent 744f9015bb
commit 270a49ee75
4 changed files with 183 additions and 144 deletions

View File

@ -28,7 +28,7 @@ ALIB= lib/librabit.a lib/librabit_mpi.a lib/librabit_empty.a lib/librabit_mock.a
HEADERS=src/*.h include/*.h include/rabit/*.h
DMLC=dmlc-core
.PHONY: clean all install mpi python lint doc
.PHONY: clean all install mpi python lint doc doxygen
all: lib/librabit.a lib/librabit_mock.a wrapper/librabit_wrapper.so wrapper/librabit_wrapper_mock.so lib/librabit_base.a
mpi: lib/librabit_mpi.a wrapper/librabit_wrapper_mpi.so
@ -68,7 +68,7 @@ $(SLIB) :
lint:
$(DMLC)/scripts/lint.py rabit $(LINT_LANG) src include wrapper
doc:
doc doxygen:
cd include; doxygen ../doc/Doxyfile; cd -
clean:

View File

@ -138,7 +138,7 @@ inline void Broadcast(std::string *sendrecv_data, int root);
*/
template<typename OP, typename DType>
inline void Allreduce(DType *sendrecvbuf, size_t count,
void (*prepare_fun)(void *arg) = NULL,
void (*prepare_fun)(void *) = NULL,
void *prepare_arg = NULL);
// C++11 support for lambda prepare function
#if DMLC_USE_CXX11
@ -262,7 +262,7 @@ class Reducer {
* \param prepare_arg argument used to pass into the lazy preprocessing function
*/
inline void Allreduce(DType *sendrecvbuf, size_t count,
void (*prepare_fun)(void *arg) = NULL,
void (*prepare_fun)(void *) = NULL,
void *prepare_arg = NULL);
#if DMLC_USE_CXX11
/*!
@ -306,7 +306,7 @@ class SerializeReducer {
*/
inline void Allreduce(DType *sendrecvobj,
size_t max_nbyte, size_t count,
void (*prepare_fun)(void *arg) = NULL,
void (*prepare_fun)(void *) = NULL,
void *prepare_arg = NULL);
// C++11 support for lambda prepare function
#if DMLC_USE_CXX11

View File

@ -1,6 +1,6 @@
"""
Python interface for rabit
Reliable Allreduce and Broadcast Library
Reliable Allreduce and Broadcast Library.
Author: Tianqi Chen
"""
# pylint: disable=unused-argument,invalid-name,global-statement,dangerous-default-value,
@ -11,37 +11,42 @@ import sys
import warnings
import numpy as np
# version information about the doc
__version__ = '1.0'
if os.name == 'nt':
WRAPPER_PATH = os.path.dirname(__file__) + '\\..\\windows\\x64\\Release\\rabit_wrapper%s.dll'
else:
WRAPPER_PATH = os.path.dirname(__file__) + '/librabit_wrapper%s.so'
rbtlib = None
_LIB = None
# load in xgboost library
def loadlib__(lib='standard'):
"""Load rabit library"""
global rbtlib
if rbtlib != None:
def _loadlib(lib='standard'):
"""Load rabit library."""
global _LIB
if _LIB != None:
warnings.warn('rabit.int call was ignored because it has'\
' already been initialized', level=2)
return
if lib == 'standard':
rbtlib = ctypes.cdll.LoadLibrary(WRAPPER_PATH % '')
_LIB = ctypes.cdll.LoadLibrary(WRAPPER_PATH % '')
elif lib == 'mock':
rbtlib = ctypes.cdll.LoadLibrary(WRAPPER_PATH % '_mock')
_LIB = ctypes.cdll.LoadLibrary(WRAPPER_PATH % '_mock')
elif lib == 'mpi':
rbtlib = ctypes.cdll.LoadLibrary(WRAPPER_PATH % '_mpi')
_LIB = ctypes.cdll.LoadLibrary(WRAPPER_PATH % '_mpi')
else:
raise Exception('unknown rabit lib %s, can be standard, mock, mpi' % lib)
rbtlib.RabitGetRank.restype = ctypes.c_int
rbtlib.RabitGetWorldSize.restype = ctypes.c_int
rbtlib.RabitVersionNumber.restype = ctypes.c_int
_LIB.RabitGetRank.restype = ctypes.c_int
_LIB.RabitGetWorldSize.restype = ctypes.c_int
_LIB.RabitVersionNumber.restype = ctypes.c_int
def unloadlib__():
"""Unload rabit library"""
global rbtlib
del rbtlib
rbtlib = None
def _unloadlib():
"""Unload rabit library."""
global _LIB
del _LIB
_LIB = None
# reduction operators
MAX = 0
@ -49,101 +54,110 @@ MIN = 1
SUM = 2
BITOR = 3
def check_err__():
"""
reserved function used to check error
def _check_err():
"""Reserved function used to check error.
"""
return
def init(args=sys.argv, lib='standard'):
def init(args=None, lib='standard'):
"""Intialize the rabit module, call this once before using anything.
Parameters
----------
args: list of str, optional
The list of arguments used to initialized the rabit
usually you need to pass in sys.argv.
Defaults to sys.argv when it is None.
lib: {'standard', 'mock', 'mpi'}
Type of library we want to load
"""
intialize the rabit module, call this once before using anything
Arguments:
args: list(string) [default=sys.argv]
the list of arguments used to initialized the rabit
usually you need to pass in sys.argv
with_mock: boolean [default=False]
Whether initialize the mock test module
"""
loadlib__(lib)
if args is None:
args = sys.argv
_loadlib(lib)
arr = (ctypes.c_char_p * len(args))()
arr[:] = args
rbtlib.RabitInit(len(args), arr)
check_err__()
_LIB.RabitInit(len(args), arr)
_check_err()
def finalize():
"""Finalize the rabit engine.
Call this function after you finished all jobs.
"""
finalize the rabit engine, call this function after you finished all jobs
"""
rbtlib.RabitFinalize()
check_err__()
unloadlib__()
_LIB.RabitFinalize()
_check_err()
_unloadlib()
def get_rank():
"""Get rank of current process.
Returns
-------
rank : int
Rank of current process.
"""
Returns rank of current process
"""
ret = rbtlib.RabitGetRank()
check_err__()
ret = _LIB.RabitGetRank()
_check_err()
return ret
def get_world_size():
"""Get total number workers.
Returns
-------
n : int
Total number of process.
"""
Returns get total number of process
"""
ret = rbtlib.RabitGetWorldSize()
check_err__()
ret = _LIB.RabitGetWorldSize()
_check_err()
return ret
def tracker_print(msg):
"""
print message to the tracker
this function can be used to communicate the information of the progress
to the tracker
"""Print message to the tracker.
This function can be used to communicate the information of
the progress to the tracker
Parameters
----------
msg : str
The message to be printed to tracker.
"""
if not isinstance(msg, str):
msg = str(msg)
rbtlib.RabitTrackerPrint(ctypes.c_char_p(msg).encode('utf-8'))
check_err__()
_LIB.RabitTrackerPrint(ctypes.c_char_p(msg).encode('utf-8'))
_check_err()
def get_processor_name():
"""
Returns the name of processor(host)
"""Get the processor name.
Returns
-------
name : str
the name of processor(host)
"""
mxlen = 256
length = ctypes.c_ulong()
buf = ctypes.create_string_buffer(mxlen)
rbtlib.RabitGetProcessorName(buf, ctypes.byref(length),
_LIB.RabitGetProcessorName(buf, ctypes.byref(length),
mxlen)
check_err__()
_check_err()
return buf.value
def broadcast(data, root):
"""
broadcast object from one node to all other nodes
this function will return the broadcasted object
"""Broadcast object from one node to all other nodes.
Example: the following example broadcast hello from rank 0 to all other nodes
```python
rabit.init()
n = 3
rank = rabit.get_rank()
s = None
if rank == 0:
s = {'hello world':100, 2:3}
print '@node[%d] before-broadcast: s=\"%s\"' % (rank, str(s))
s = rabit.broadcast(s, 0)
print '@node[%d] after-broadcast: s=\"%s\"' % (rank, str(s))
rabit.finalize()
```
Parameters
----------
data : any type that can be pickled
Input data, if current rank does not equal root, this can be None
root : int
Rank of the node to broadcast data from.
Arguments:
data: anytype that can be pickled
input data, if current rank does not equal root, this can be None
root: int
rank of the node to broadcast data from
Returns:
the result of broadcast
Returns
-------
object : int
the result of broadcast.
"""
rank = get_rank()
length = ctypes.c_ulong()
@ -152,22 +166,22 @@ def broadcast(data, root):
s = pickle.dumps(data, protocol=pickle.HIGHEST_PROTOCOL)
length.value = len(s)
# run first broadcast
rbtlib.RabitBroadcast(ctypes.byref(length),
_LIB.RabitBroadcast(ctypes.byref(length),
ctypes.sizeof(ctypes.c_ulong),
root)
check_err__()
_check_err()
if root != rank:
dptr = (ctypes.c_char * length.value)()
# run second
rbtlib.RabitBroadcast(ctypes.cast(dptr, ctypes.c_void_p),
_LIB.RabitBroadcast(ctypes.cast(dptr, ctypes.c_void_p),
length.value, root)
check_err__()
_check_err()
data = pickle.loads(dptr.raw)
del dptr
else:
rbtlib.RabitBroadcast(ctypes.cast(ctypes.c_char_p(s), ctypes.c_void_p),
_LIB.RabitBroadcast(ctypes.cast(ctypes.c_char_p(s), ctypes.c_void_p),
length.value, root)
check_err__()
_check_err()
del s
return data
@ -184,20 +198,28 @@ DTYPE_ENUM__ = {
}
def allreduce(data, op, prepare_fun=None):
"""
perform allreduce, return the result, this function is not thread-safe
Arguments:
data: numpy ndarray
input data
op: int
reduction operators, can be MIN, MAX, SUM, BITOR
prepare_fun: lambda data
Lazy preprocessing function, if it is not None, prepare_fun(data)
will be called by the function before performing allreduce, to intialize the data
If the result of Allreduce can be recovered directly,
then prepare_fun will NOT be called
Returns:
the result of allreduce, have same shape as data
"""Perform allreduce, return the result.
Parameters
----------
data: numpy array
Input data.
op: int
Reduction operators, can be MIN, MAX, SUM, BITOR
prepare_fun: function
Lazy preprocessing function, if it is not None, prepare_fun(data)
will be called by the function before performing allreduce, to intialize the data
If the result of Allreduce can be recovered directly,
then prepare_fun will NOT be called
Returns
-------
result : array_like
The result of allreduce, have same shape as data
Notes
-----
This function is not thread-safe.
"""
if not isinstance(data, np.ndarray):
raise Exception('allreduce only takes in numpy.ndarray')
@ -207,7 +229,7 @@ def allreduce(data, op, prepare_fun=None):
if buf.dtype not in DTYPE_ENUM__:
raise Exception('data type %s not supported' % str(buf.dtype))
if prepare_fun is None:
rbtlib.RabitAllreduce(buf.ctypes.data_as(ctypes.c_void_p),
_LIB.RabitAllreduce(buf.ctypes.data_as(ctypes.c_void_p),
buf.size, DTYPE_ENUM__[buf.dtype],
op, None, None)
else:
@ -215,14 +237,14 @@ def allreduce(data, op, prepare_fun=None):
def pfunc(args):
"""prepare function."""
prepare_fun(data)
rbtlib.RabitAllreduce(buf.ctypes.data_as(ctypes.c_void_p),
_LIB.RabitAllreduce(buf.ctypes.data_as(ctypes.c_void_p),
buf.size, DTYPE_ENUM__[buf.dtype],
op, func_ptr(pfunc), None)
check_err__()
_check_err()
return buf
def load_model__(ptr, length):
def _load_model(ptr, length):
"""
Internal function used by the module,
unpickle a model from a buffer specified by ptr, length
@ -236,12 +258,16 @@ def load_model__(ptr, length):
return pickle.loads(data.raw)
def load_checkpoint(with_local=False):
"""
load latest check point
Arguments:
with_local: boolean [default = False]
whether the checkpoint contains local model
Returns:
"""Load latest check point.
Parameters
----------
with_local: bool, optional
whether the checkpoint contains local model
Returns
-------
tuple : tuple
if with_local: return (version, gobal_model, local_model)
else return (version, gobal_model)
if returned version == 0, this means no model has been CheckPointed
@ -252,62 +278,73 @@ def load_checkpoint(with_local=False):
if with_local:
lptr = ctypes.POINTER(ctypes.c_char)()
local_len = ctypes.c_ulong()
version = rbtlib.RabitLoadCheckPoint(
version = _LIB.RabitLoadCheckPoint(
ctypes.byref(gptr),
ctypes.byref(global_len),
ctypes.byref(lptr),
ctypes.byref(local_len))
check_err__()
_check_err()
if version == 0:
return (version, None, None)
return (version,
load_model__(gptr, global_len.value),
load_model__(lptr, local_len.value))
_load_model(gptr, global_len.value),
_load_model(lptr, local_len.value))
else:
version = rbtlib.RabitLoadCheckPoint(
version = _LIB.RabitLoadCheckPoint(
ctypes.byref(gptr),
ctypes.byref(global_len),
None, None)
check_err__()
_check_err()
if version == 0:
return (version, None)
return (version,
load_model__(gptr, global_len.value))
_load_model(gptr, global_len.value))
def checkpoint(global_model, local_model=None):
"""
checkpoint the model, meaning we finished a stage of execution
every time we call check point, there is a version number which will increase by one
"""Checkpoint the model.
Arguments:
global_model: anytype that can be pickled
globally shared model/state when calling this function,
the caller need to gauranttees that global_model is the same in all nodes
local_model: anytype that can be pickled
local model, that is specific to current node/rank.
This can be None when no local state is needed.
local_model requires explicit replication of the model for fault-tolerance,
which will bring replication cost in checkpoint function,
while global_model do not need explicit replication.
It is recommended to use global_model if possible
This means we finished a stage of execution.
Every time we call check point, there is a version number which will increase by one.
Parameters
----------
global_model: anytype that can be pickled
globally shared model/state when calling this function,
the caller need to gauranttees that global_model is the same in all nodes
local_model: anytype that can be pickled
Local model, that is specific to current node/rank.
This can be None when no local state is needed.
Notes
-----
local_model requires explicit replication of the model for fault-tolerance.
This will bring replication cost in checkpoint function.
while global_model do not need explicit replication.
It is recommended to use global_model if possible.
"""
sglobal = pickle.dumps(global_model)
if local_model is None:
rbtlib.RabitCheckPoint(sglobal, len(sglobal), None, 0)
check_err__()
_LIB.RabitCheckPoint(sglobal, len(sglobal), None, 0)
_check_err()
del sglobal
else:
slocal = pickle.dumps(local_model)
rbtlib.RabitCheckPoint(sglobal, len(sglobal), slocal, len(slocal))
check_err__()
_LIB.RabitCheckPoint(sglobal, len(sglobal), slocal, len(slocal))
_check_err()
del slocal
del sglobal
def version_number():
"""Returns version number of current stored model.
This means how many calls to CheckPoint we made so far.
Returns
-------
version : int
Version number of currently stored model
"""
Returns version number of current stored model,
which means how many calls to CheckPoint we made so far
"""
ret = rbtlib.RabitVersionNumber()
check_err__()
ret = _LIB.RabitVersionNumber()
_check_err()
return ret

2
wrapper/requirements.txt Normal file
View File

@ -0,0 +1,2 @@
numpy==1.8.1