[LOG] Simplfy README.md add change logs.

This commit is contained in:
tqchen 2016-01-11 16:18:54 -08:00
parent 2dc6c2dc52
commit 263b7befde
2 changed files with 33 additions and 31 deletions

View File

@ -35,6 +35,7 @@ xgboost-0.4
* sklearn wrapper is supported in python module
* Experimental External memory version
xgboost-0.47
------------
* Changes in R library
@ -52,10 +53,28 @@ xgboost-0.47
- improved compatibility in sklearn module.
- additional parameters added for sklearn wrapper.
- added pip installation functionality.
- supports more Pandas DataFrame dtypes.
- supports more Pandas DataFrame dtypes.
- added best_ntree_limit attribute, in addition to best_score and best_iteration.
* Java api is ready for use
* Added more test cases and continuous integration to make each build more robust.
on going at master
------------------
xgboost brick: next release candidate
-------------------------------------
* Major refactor of core library.
- Goal: more flexible and modular code as a portable library.
- Switch to use of c++11 standard code.
- Random number generator defaults to ```std::mt19937```.
- Share the data loading pipeline and logging module from dmlc-core.
- Enable registry pattern to allow optionally plugin of objective, metric, tree constructor, data loader.
- Future plugin modules can be put into xgboost/plugin and register back to the library.
- Remove most of the raw pointers to smart ptrs, for RAII safety.
* Change library name to libxgboost.so
* Backward compatiblity
- The binary buffer file is not backward compatible with previous version.
- The model file is backward compatible on 64 bit platforms.
* The model file is compatible between 64/32 bit platforms(not yet tested).
* External memory version and other advanced features will be exposed to R library as well on linux.
- Previously some of the features are blocked due to C++11 and threading limits.
- The windows version is still blocked due to Rtools do not support ```std::thread```.
* rabit and dmlc-core are maintained through git submodule
- Anyone can open PR to update these dependencies now.

View File

@ -7,47 +7,31 @@
[![PyPI version](https://badge.fury.io/py/xgboost.svg)](https://pypi.python.org/pypi/xgboost/)
[![Gitter chat for developers at https://gitter.im/dmlc/xgboost](https://badges.gitter.im/Join%20Chat.svg)](https://gitter.im/dmlc/xgboost?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)
An optimized general purpose gradient boosting library. The library is parallelized, and also provides an optimized distributed version.
It implements machine learning algorithms under the [Gradient Boosting](https://en.wikipedia.org/wiki/Gradient_boosting) framework, including [Generalized Linear Model](https://en.wikipedia.org/wiki/Generalized_linear_model) (GLM) and [Gradient Boosted Decision Trees](https://en.wikipedia.org/wiki/Gradient_boosting#Gradient_tree_boosting) (GBDT). XGBoost can also be [distributed](#features) and scale to Terascale data
XGBoost is part of [Distributed Machine Learning Common](http://dmlc.github.io/) projects
XGBoost is an optimized distributed gradient boosting library designed to be highly *efficient*, *flexible* and *portable*.
It implements machine learning algorithms under the [Gradient Boosting](https://en.wikipedia.org/wiki/Gradient_boosting) framework.
XGBoost provides a parallel tree boosting(also known as GBDT, GBM) that solve many data science problems in a fast and accurate way.
The same code runs on major distributed environment(Hadoop, SGE, MPI) and can solve problems beyond billions of examples.
XGBoost is part of [DMLC](http://dmlc.github.io/) projects.
Contents
--------
* [What's New](#whats-new)
* [Version](#version)
* [Documentation](doc/index.md)
* [Build Instruction](doc/build.md)
* [Features](#features)
* [Distributed XGBoost](multi-node)
* [Documentation](https://xgboost.readthedocs.org)
* [Usecases](doc/index.md#highlight-links)
* [Bug Reporting](#bug-reporting)
* [Contributing to XGBoost](#contributing-to-xgboost)
* [Code Examples](demo)
* [Build Instruction](doc/build.md)
* [Committers and Contributors](CONTRIBUTORS.md)
* [License](#license)
* [XGBoost in Graphlab Create](#xgboost-in-graphlab-create)
What's New
----------
* XGBoost [brick](CHANGES.md)
* XGBoost helps Vlad Mironov, Alexander Guschin to win the [CERN LHCb experiment Flavour of Physics competition](https://www.kaggle.com/c/flavours-of-physics). Check out the [interview from Kaggle](http://blog.kaggle.com/2015/11/30/flavour-of-physics-technical-write-up-1st-place-go-polar-bears/).
* XGBoost helps Mario Filho, Josef Feigl, Lucas, Gilberto to win the [Caterpillar Tube Pricing competition](https://www.kaggle.com/c/caterpillar-tube-pricing). Check out the [interview from Kaggle](http://blog.kaggle.com/2015/09/22/caterpillar-winners-interview-1st-place-gilberto-josef-leustagos-mario/).
* XGBoost helps Halla Yang to win the [Recruit Coupon Purchase Prediction Challenge](https://www.kaggle.com/c/coupon-purchase-prediction). Check out the [interview from Kaggle](http://blog.kaggle.com/2015/10/21/recruit-coupon-purchase-winners-interview-2nd-place-halla-yang/).
* XGBoost helps Owen Zhang to win the [Avito Context Ad Click competition](https://www.kaggle.com/c/avito-context-ad-clicks). Check out the [interview from Kaggle](http://blog.kaggle.com/2015/08/26/avito-winners-interview-1st-place-owen-zhang/).
* XGBoost helps Chenglong Chen to win [Kaggle CrowdFlower Competition](https://www.kaggle.com/c/crowdflower-search-relevance)
Check out the [winning solution](https://github.com/ChenglongChen/Kaggle_CrowdFlower)
* XGBoost-0.4 release, see [CHANGES.md](CHANGES.md#xgboost-04)
* XGBoost helps three champion teams to win [WWW2015 Microsoft Malware Classification Challenge (BIG 2015)](http://www.kaggle.com/c/malware-classification/forums/t/13490/say-no-to-overfitting-approaches-sharing)
Check out the [winning solution](doc/README.md#highlight-links)
* [External Memory Version](doc/external_memory.md)
Version
-------
* Current version xgboost-0.4
- [Change log](CHANGES.md)
- This version is compatible with 0.3x versions
* Current version xgboost-0.6 (brick)
- See [Change log](CHANGES.md) for details
Features
--------
@ -76,4 +60,3 @@ XGBoost has been developed and used by a group of active community members. Ever
License
-------
© Contributors, 2015. Licensed under an [Apache-2](https://github.com/dmlc/xgboost/blob/master/LICENSE) license.