Simplify sparse and dense CPU hist kernels (#7029)
* Simplify sparse and dense kernels * Extract row partitioner. Co-authored-by: Kirill Shvets <kirill.shvets@intel.com>
This commit is contained in:
parent
1faad825f4
commit
2567404ab6
@ -30,6 +30,8 @@ enum ColumnType {
|
|||||||
template <typename BinIdxType>
|
template <typename BinIdxType>
|
||||||
class Column {
|
class Column {
|
||||||
public:
|
public:
|
||||||
|
static constexpr int32_t kMissingId = -1;
|
||||||
|
|
||||||
Column(ColumnType type, common::Span<const BinIdxType> index, const uint32_t index_base)
|
Column(ColumnType type, common::Span<const BinIdxType> index, const uint32_t index_base)
|
||||||
: type_(type),
|
: type_(type),
|
||||||
index_(index),
|
index_(index),
|
||||||
@ -71,6 +73,30 @@ class SparseColumn: public Column<BinIdxType> {
|
|||||||
|
|
||||||
const size_t* GetRowData() const { return row_ind_.data(); }
|
const size_t* GetRowData() const { return row_ind_.data(); }
|
||||||
|
|
||||||
|
int32_t GetBinIdx(size_t rid, size_t* state) const {
|
||||||
|
const size_t column_size = this->Size();
|
||||||
|
if (!((*state) < column_size)) {
|
||||||
|
return this->kMissingId;
|
||||||
|
}
|
||||||
|
while ((*state) < column_size && GetRowIdx(*state) < rid) {
|
||||||
|
++(*state);
|
||||||
|
}
|
||||||
|
if (((*state) < column_size) && GetRowIdx(*state) == rid) {
|
||||||
|
return this->GetGlobalBinIdx(*state);
|
||||||
|
} else {
|
||||||
|
return this->kMissingId;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
size_t GetInitialState(const size_t first_row_id) const {
|
||||||
|
const size_t* row_data = GetRowData();
|
||||||
|
const size_t column_size = this->Size();
|
||||||
|
// search first nonzero row with index >= rid_span.front()
|
||||||
|
const size_t* p = std::lower_bound(row_data, row_data + column_size, first_row_id);
|
||||||
|
// column_size if all messing
|
||||||
|
return p - row_data;
|
||||||
|
}
|
||||||
|
|
||||||
size_t GetRowIdx(size_t idx) const {
|
size_t GetRowIdx(size_t idx) const {
|
||||||
return row_ind_.data()[idx];
|
return row_ind_.data()[idx];
|
||||||
}
|
}
|
||||||
@ -80,7 +106,7 @@ class SparseColumn: public Column<BinIdxType> {
|
|||||||
common::Span<const size_t> row_ind_;
|
common::Span<const size_t> row_ind_;
|
||||||
};
|
};
|
||||||
|
|
||||||
template <typename BinIdxType>
|
template <typename BinIdxType, bool any_missing>
|
||||||
class DenseColumn: public Column<BinIdxType> {
|
class DenseColumn: public Column<BinIdxType> {
|
||||||
public:
|
public:
|
||||||
DenseColumn(ColumnType type, common::Span<const BinIdxType> index,
|
DenseColumn(ColumnType type, common::Span<const BinIdxType> index,
|
||||||
@ -90,6 +116,19 @@ class DenseColumn: public Column<BinIdxType> {
|
|||||||
missing_flags_(missing_flags),
|
missing_flags_(missing_flags),
|
||||||
feature_offset_(feature_offset) {}
|
feature_offset_(feature_offset) {}
|
||||||
bool IsMissing(size_t idx) const { return missing_flags_[feature_offset_ + idx]; }
|
bool IsMissing(size_t idx) const { return missing_flags_[feature_offset_ + idx]; }
|
||||||
|
|
||||||
|
int32_t GetBinIdx(size_t idx, size_t* state) const {
|
||||||
|
if (any_missing) {
|
||||||
|
return IsMissing(idx) ? this->kMissingId : this->GetGlobalBinIdx(idx);
|
||||||
|
} else {
|
||||||
|
return this->GetGlobalBinIdx(idx);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
size_t GetInitialState(const size_t first_row_id) const {
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
private:
|
private:
|
||||||
/* flags for missing values in dense columns */
|
/* flags for missing values in dense columns */
|
||||||
const std::vector<bool>& missing_flags_;
|
const std::vector<bool>& missing_flags_;
|
||||||
@ -202,7 +241,7 @@ class ColumnMatrix {
|
|||||||
|
|
||||||
/* Fetch an individual column. This code should be used with type swith
|
/* Fetch an individual column. This code should be used with type swith
|
||||||
to determine type of bin id's */
|
to determine type of bin id's */
|
||||||
template <typename BinIdxType>
|
template <typename BinIdxType, bool any_missing>
|
||||||
std::unique_ptr<const Column<BinIdxType> > GetColumn(unsigned fid) const {
|
std::unique_ptr<const Column<BinIdxType> > GetColumn(unsigned fid) const {
|
||||||
CHECK_EQ(sizeof(BinIdxType), bins_type_size_);
|
CHECK_EQ(sizeof(BinIdxType), bins_type_size_);
|
||||||
|
|
||||||
@ -213,7 +252,8 @@ class ColumnMatrix {
|
|||||||
column_size };
|
column_size };
|
||||||
std::unique_ptr<const Column<BinIdxType> > res;
|
std::unique_ptr<const Column<BinIdxType> > res;
|
||||||
if (type_[fid] == ColumnType::kDenseColumn) {
|
if (type_[fid] == ColumnType::kDenseColumn) {
|
||||||
res.reset(new DenseColumn<BinIdxType>(type_[fid], bin_index, index_base_[fid],
|
CHECK_EQ(any_missing, any_missing_);
|
||||||
|
res.reset(new DenseColumn<BinIdxType, any_missing>(type_[fid], bin_index, index_base_[fid],
|
||||||
missing_flags_, feature_offset));
|
missing_flags_, feature_offset));
|
||||||
} else {
|
} else {
|
||||||
res.reset(new SparseColumn<BinIdxType>(type_[fid], bin_index, index_base_[fid],
|
res.reset(new SparseColumn<BinIdxType>(type_[fid], bin_index, index_base_[fid],
|
||||||
|
|||||||
@ -287,57 +287,18 @@ struct Prefetch {
|
|||||||
constexpr size_t Prefetch::kNoPrefetchSize;
|
constexpr size_t Prefetch::kNoPrefetchSize;
|
||||||
|
|
||||||
|
|
||||||
template<typename FPType, bool do_prefetch, typename BinIdxType>
|
template<typename FPType, bool do_prefetch, typename BinIdxType, bool any_missing = true>
|
||||||
void BuildHistDenseKernel(const std::vector<GradientPair>& gpair,
|
void BuildHistKernel(const std::vector<GradientPair>& gpair,
|
||||||
const RowSetCollection::Elem row_indices,
|
const RowSetCollection::Elem row_indices,
|
||||||
const GHistIndexMatrix& gmat,
|
const GHistIndexMatrix& gmat,
|
||||||
const size_t n_features,
|
|
||||||
GHistRow<FPType> hist) {
|
GHistRow<FPType> hist) {
|
||||||
const size_t size = row_indices.Size();
|
const size_t size = row_indices.Size();
|
||||||
const size_t* rid = row_indices.begin;
|
const size_t* rid = row_indices.begin;
|
||||||
const float* pgh = reinterpret_cast<const float*>(gpair.data());
|
const float* pgh = reinterpret_cast<const float*>(gpair.data());
|
||||||
const BinIdxType* gradient_index = gmat.index.data<BinIdxType>();
|
const BinIdxType* gradient_index = gmat.index.data<BinIdxType>();
|
||||||
const uint32_t* offsets = gmat.index.Offset();
|
|
||||||
FPType* hist_data = reinterpret_cast<FPType*>(hist.data());
|
|
||||||
const uint32_t two {2}; // Each element from 'gpair' and 'hist' contains
|
|
||||||
// 2 FP values: gradient and hessian.
|
|
||||||
// So we need to multiply each row-index/bin-index by 2
|
|
||||||
// to work with gradient pairs as a singe row FP array
|
|
||||||
|
|
||||||
for (size_t i = 0; i < size; ++i) {
|
|
||||||
const size_t icol_start = rid[i] * n_features;
|
|
||||||
const size_t idx_gh = two * rid[i];
|
|
||||||
|
|
||||||
if (do_prefetch) {
|
|
||||||
const size_t icol_start_prefetch = rid[i + Prefetch::kPrefetchOffset] * n_features;
|
|
||||||
|
|
||||||
PREFETCH_READ_T0(pgh + two * rid[i + Prefetch::kPrefetchOffset]);
|
|
||||||
for (size_t j = icol_start_prefetch; j < icol_start_prefetch + n_features;
|
|
||||||
j += Prefetch::GetPrefetchStep<BinIdxType>()) {
|
|
||||||
PREFETCH_READ_T0(gradient_index + j);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
const BinIdxType* gr_index_local = gradient_index + icol_start;
|
|
||||||
for (size_t j = 0; j < n_features; ++j) {
|
|
||||||
const uint32_t idx_bin = two * (static_cast<uint32_t>(gr_index_local[j]) +
|
|
||||||
offsets[j]);
|
|
||||||
|
|
||||||
hist_data[idx_bin] += pgh[idx_gh];
|
|
||||||
hist_data[idx_bin+1] += pgh[idx_gh+1];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template<typename FPType, bool do_prefetch>
|
|
||||||
void BuildHistSparseKernel(const std::vector<GradientPair>& gpair,
|
|
||||||
const RowSetCollection::Elem row_indices,
|
|
||||||
const GHistIndexMatrix& gmat,
|
|
||||||
GHistRow<FPType> hist) {
|
|
||||||
const size_t size = row_indices.Size();
|
|
||||||
const size_t* rid = row_indices.begin;
|
|
||||||
const float* pgh = reinterpret_cast<const float*>(gpair.data());
|
|
||||||
const uint32_t* gradient_index = gmat.index.data<uint32_t>();
|
|
||||||
const size_t* row_ptr = gmat.row_ptr.data();
|
const size_t* row_ptr = gmat.row_ptr.data();
|
||||||
|
const uint32_t* offsets = gmat.index.Offset();
|
||||||
|
const size_t n_features = row_ptr[row_indices.begin[0]+1] - row_ptr[row_indices.begin[0]];
|
||||||
FPType* hist_data = reinterpret_cast<FPType*>(hist.data());
|
FPType* hist_data = reinterpret_cast<FPType*>(hist.data());
|
||||||
const uint32_t two {2}; // Each element from 'gpair' and 'hist' contains
|
const uint32_t two {2}; // Each element from 'gpair' and 'hist' contains
|
||||||
// 2 FP values: gradient and hessian.
|
// 2 FP values: gradient and hessian.
|
||||||
@ -345,13 +306,16 @@ void BuildHistSparseKernel(const std::vector<GradientPair>& gpair,
|
|||||||
// to work with gradient pairs as a singe row FP array
|
// to work with gradient pairs as a singe row FP array
|
||||||
|
|
||||||
for (size_t i = 0; i < size; ++i) {
|
for (size_t i = 0; i < size; ++i) {
|
||||||
const size_t icol_start = row_ptr[rid[i]];
|
const size_t icol_start = any_missing ? row_ptr[rid[i]] : rid[i] * n_features;
|
||||||
const size_t icol_end = row_ptr[rid[i]+1];
|
const size_t icol_end = any_missing ? row_ptr[rid[i]+1] : icol_start + n_features;
|
||||||
|
const size_t row_size = icol_end - icol_start;
|
||||||
const size_t idx_gh = two * rid[i];
|
const size_t idx_gh = two * rid[i];
|
||||||
|
|
||||||
if (do_prefetch) {
|
if (do_prefetch) {
|
||||||
const size_t icol_start_prftch = row_ptr[rid[i+Prefetch::kPrefetchOffset]];
|
const size_t icol_start_prftch = any_missing ? row_ptr[rid[i+Prefetch::kPrefetchOffset]] :
|
||||||
const size_t icol_end_prefect = row_ptr[rid[i+Prefetch::kPrefetchOffset]+1];
|
rid[i + Prefetch::kPrefetchOffset] * n_features;
|
||||||
|
const size_t icol_end_prefect = any_missing ? row_ptr[rid[i+Prefetch::kPrefetchOffset]+1] :
|
||||||
|
icol_start_prftch + n_features;
|
||||||
|
|
||||||
PREFETCH_READ_T0(pgh + two * rid[i + Prefetch::kPrefetchOffset]);
|
PREFETCH_READ_T0(pgh + two * rid[i + Prefetch::kPrefetchOffset]);
|
||||||
for (size_t j = icol_start_prftch; j < icol_end_prefect;
|
for (size_t j = icol_start_prftch; j < icol_end_prefect;
|
||||||
@ -359,47 +323,34 @@ void BuildHistSparseKernel(const std::vector<GradientPair>& gpair,
|
|||||||
PREFETCH_READ_T0(gradient_index + j);
|
PREFETCH_READ_T0(gradient_index + j);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
for (size_t j = icol_start; j < icol_end; ++j) {
|
const BinIdxType* gr_index_local = gradient_index + icol_start;
|
||||||
const uint32_t idx_bin = two * gradient_index[j];
|
|
||||||
|
for (size_t j = 0; j < row_size; ++j) {
|
||||||
|
const uint32_t idx_bin = two * (static_cast<uint32_t>(gr_index_local[j]) + (
|
||||||
|
any_missing ? 0 : offsets[j]));
|
||||||
|
|
||||||
hist_data[idx_bin] += pgh[idx_gh];
|
hist_data[idx_bin] += pgh[idx_gh];
|
||||||
hist_data[idx_bin+1] += pgh[idx_gh+1];
|
hist_data[idx_bin+1] += pgh[idx_gh+1];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
template<typename FPType, bool do_prefetch, bool any_missing>
|
||||||
template<typename FPType, bool do_prefetch, typename BinIdxType>
|
void BuildHistDispatch(const std::vector<GradientPair>& gpair,
|
||||||
void BuildHistDispatchKernel(const std::vector<GradientPair>& gpair,
|
|
||||||
const RowSetCollection::Elem row_indices,
|
const RowSetCollection::Elem row_indices,
|
||||||
const GHistIndexMatrix& gmat, GHistRow<FPType> hist, bool isDense) {
|
const GHistIndexMatrix& gmat, GHistRow<FPType> hist) {
|
||||||
if (isDense) {
|
|
||||||
const size_t* row_ptr = gmat.row_ptr.data();
|
|
||||||
const size_t n_features = row_ptr[row_indices.begin[0]+1] - row_ptr[row_indices.begin[0]];
|
|
||||||
BuildHistDenseKernel<FPType, do_prefetch, BinIdxType>(gpair, row_indices,
|
|
||||||
gmat, n_features, hist);
|
|
||||||
} else {
|
|
||||||
BuildHistSparseKernel<FPType, do_prefetch>(gpair, row_indices,
|
|
||||||
gmat, hist);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template<typename FPType, bool do_prefetch>
|
|
||||||
void BuildHistKernel(const std::vector<GradientPair>& gpair,
|
|
||||||
const RowSetCollection::Elem row_indices,
|
|
||||||
const GHistIndexMatrix& gmat, const bool isDense, GHistRow<FPType> hist) {
|
|
||||||
const bool is_dense = row_indices.Size() && isDense;
|
|
||||||
switch (gmat.index.GetBinTypeSize()) {
|
switch (gmat.index.GetBinTypeSize()) {
|
||||||
case kUint8BinsTypeSize:
|
case kUint8BinsTypeSize:
|
||||||
BuildHistDispatchKernel<FPType, do_prefetch, uint8_t>(gpair, row_indices,
|
BuildHistKernel<FPType, do_prefetch, uint8_t, any_missing>(gpair, row_indices,
|
||||||
gmat, hist, is_dense);
|
gmat, hist);
|
||||||
break;
|
break;
|
||||||
case kUint16BinsTypeSize:
|
case kUint16BinsTypeSize:
|
||||||
BuildHistDispatchKernel<FPType, do_prefetch, uint16_t>(gpair, row_indices,
|
BuildHistKernel<FPType, do_prefetch, uint16_t, any_missing>(gpair, row_indices,
|
||||||
gmat, hist, is_dense);
|
gmat, hist);
|
||||||
break;
|
break;
|
||||||
case kUint32BinsTypeSize:
|
case kUint32BinsTypeSize:
|
||||||
BuildHistDispatchKernel<FPType, do_prefetch, uint32_t>(gpair, row_indices,
|
BuildHistKernel<FPType, do_prefetch, uint32_t, any_missing>(gpair, row_indices,
|
||||||
gmat, hist, is_dense);
|
gmat, hist);
|
||||||
break;
|
break;
|
||||||
default:
|
default:
|
||||||
CHECK(false); // no default behavior
|
CHECK(false); // no default behavior
|
||||||
@ -407,10 +358,12 @@ void BuildHistKernel(const std::vector<GradientPair>& gpair,
|
|||||||
}
|
}
|
||||||
|
|
||||||
template <typename GradientSumT>
|
template <typename GradientSumT>
|
||||||
|
template <bool any_missing>
|
||||||
void GHistBuilder<GradientSumT>::BuildHist(
|
void GHistBuilder<GradientSumT>::BuildHist(
|
||||||
const std::vector<GradientPair> &gpair,
|
const std::vector<GradientPair> &gpair,
|
||||||
const RowSetCollection::Elem row_indices, const GHistIndexMatrix &gmat,
|
const RowSetCollection::Elem row_indices,
|
||||||
GHistRowT hist, bool isDense) {
|
const GHistIndexMatrix &gmat,
|
||||||
|
GHistRowT hist) {
|
||||||
const size_t nrows = row_indices.Size();
|
const size_t nrows = row_indices.Size();
|
||||||
const size_t no_prefetch_size = Prefetch::NoPrefetchSize(nrows);
|
const size_t no_prefetch_size = Prefetch::NoPrefetchSize(nrows);
|
||||||
|
|
||||||
@ -419,28 +372,36 @@ void GHistBuilder<GradientSumT>::BuildHist(
|
|||||||
|
|
||||||
if (contiguousBlock) {
|
if (contiguousBlock) {
|
||||||
// contiguous memory access, built-in HW prefetching is enough
|
// contiguous memory access, built-in HW prefetching is enough
|
||||||
BuildHistKernel<GradientSumT, false>(gpair, row_indices, gmat, isDense, hist);
|
BuildHistDispatch<GradientSumT, false, any_missing>(gpair, row_indices, gmat, hist);
|
||||||
} else {
|
} else {
|
||||||
const RowSetCollection::Elem span1(row_indices.begin, row_indices.end - no_prefetch_size);
|
const RowSetCollection::Elem span1(row_indices.begin, row_indices.end - no_prefetch_size);
|
||||||
const RowSetCollection::Elem span2(row_indices.end - no_prefetch_size, row_indices.end);
|
const RowSetCollection::Elem span2(row_indices.end - no_prefetch_size, row_indices.end);
|
||||||
|
|
||||||
BuildHistKernel<GradientSumT, true>(gpair, span1, gmat, isDense, hist);
|
BuildHistDispatch<GradientSumT, true, any_missing>(gpair, span1, gmat, hist);
|
||||||
// no prefetching to avoid loading extra memory
|
// no prefetching to avoid loading extra memory
|
||||||
BuildHistKernel<GradientSumT, false>(gpair, span2, gmat, isDense, hist);
|
BuildHistDispatch<GradientSumT, false, any_missing>(gpair, span2, gmat, hist);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
template
|
template
|
||||||
void GHistBuilder<float>::BuildHist(const std::vector<GradientPair>& gpair,
|
void GHistBuilder<float>::BuildHist<true>(const std::vector<GradientPair>& gpair,
|
||||||
const RowSetCollection::Elem row_indices,
|
const RowSetCollection::Elem row_indices,
|
||||||
const GHistIndexMatrix& gmat,
|
const GHistIndexMatrix& gmat,
|
||||||
GHistRow<float> hist,
|
GHistRow<float> hist);
|
||||||
bool isDense);
|
|
||||||
template
|
template
|
||||||
void GHistBuilder<double>::BuildHist(const std::vector<GradientPair>& gpair,
|
void GHistBuilder<float>::BuildHist<false>(const std::vector<GradientPair>& gpair,
|
||||||
const RowSetCollection::Elem row_indices,
|
const RowSetCollection::Elem row_indices,
|
||||||
const GHistIndexMatrix& gmat,
|
const GHistIndexMatrix& gmat,
|
||||||
GHistRow<double> hist,
|
GHistRow<float> hist);
|
||||||
bool isDense);
|
template
|
||||||
|
void GHistBuilder<double>::BuildHist<true>(const std::vector<GradientPair>& gpair,
|
||||||
|
const RowSetCollection::Elem row_indices,
|
||||||
|
const GHistIndexMatrix& gmat,
|
||||||
|
GHistRow<double> hist);
|
||||||
|
template
|
||||||
|
void GHistBuilder<double>::BuildHist<false>(const std::vector<GradientPair>& gpair,
|
||||||
|
const RowSetCollection::Elem row_indices,
|
||||||
|
const GHistIndexMatrix& gmat,
|
||||||
|
GHistRow<double> hist);
|
||||||
|
|
||||||
template<typename GradientSumT>
|
template<typename GradientSumT>
|
||||||
void GHistBuilder<GradientSumT>::SubtractionTrick(GHistRowT self,
|
void GHistBuilder<GradientSumT>::SubtractionTrick(GHistRowT self,
|
||||||
|
|||||||
@ -627,11 +627,11 @@ class GHistBuilder {
|
|||||||
GHistBuilder(size_t nthread, uint32_t nbins) : nthread_{nthread}, nbins_{nbins} {}
|
GHistBuilder(size_t nthread, uint32_t nbins) : nthread_{nthread}, nbins_{nbins} {}
|
||||||
|
|
||||||
// construct a histogram via histogram aggregation
|
// construct a histogram via histogram aggregation
|
||||||
|
template <bool any_missing>
|
||||||
void BuildHist(const std::vector<GradientPair>& gpair,
|
void BuildHist(const std::vector<GradientPair>& gpair,
|
||||||
const RowSetCollection::Elem row_indices,
|
const RowSetCollection::Elem row_indices,
|
||||||
const GHistIndexMatrix& gmat,
|
const GHistIndexMatrix& gmat,
|
||||||
GHistRowT hist,
|
GHistRowT hist);
|
||||||
bool isDense);
|
|
||||||
// construct a histogram via subtraction trick
|
// construct a histogram via subtraction trick
|
||||||
void SubtractionTrick(GHistRowT self,
|
void SubtractionTrick(GHistRowT self,
|
||||||
GHistRowT sibling,
|
GHistRowT sibling,
|
||||||
|
|||||||
228
src/common/partition_builder.h
Normal file
228
src/common/partition_builder.h
Normal file
@ -0,0 +1,228 @@
|
|||||||
|
|
||||||
|
/*!
|
||||||
|
* Copyright 2021 by Contributors
|
||||||
|
* \file row_set.h
|
||||||
|
* \brief Quick Utility to compute subset of rows
|
||||||
|
* \author Philip Cho, Tianqi Chen
|
||||||
|
*/
|
||||||
|
#ifndef XGBOOST_COMMON_PARTITION_BUILDER_H_
|
||||||
|
#define XGBOOST_COMMON_PARTITION_BUILDER_H_
|
||||||
|
|
||||||
|
#include <xgboost/data.h>
|
||||||
|
#include <algorithm>
|
||||||
|
#include <vector>
|
||||||
|
#include <utility>
|
||||||
|
#include <memory>
|
||||||
|
#include "xgboost/tree_model.h"
|
||||||
|
#include "../common/column_matrix.h"
|
||||||
|
|
||||||
|
namespace xgboost {
|
||||||
|
namespace common {
|
||||||
|
|
||||||
|
// The builder is required for samples partition to left and rights children for set of nodes
|
||||||
|
// Responsible for:
|
||||||
|
// 1) Effective memory allocation for intermediate results for multi-thread work
|
||||||
|
// 2) Merging partial results produced by threads into original row set (row_set_collection_)
|
||||||
|
// BlockSize is template to enable memory alignment easily with C++11 'alignas()' feature
|
||||||
|
template<size_t BlockSize>
|
||||||
|
class PartitionBuilder {
|
||||||
|
public:
|
||||||
|
template<typename Func>
|
||||||
|
void Init(const size_t n_tasks, size_t n_nodes, Func funcNTaks) {
|
||||||
|
left_right_nodes_sizes_.resize(n_nodes);
|
||||||
|
blocks_offsets_.resize(n_nodes+1);
|
||||||
|
|
||||||
|
blocks_offsets_[0] = 0;
|
||||||
|
for (size_t i = 1; i < n_nodes+1; ++i) {
|
||||||
|
blocks_offsets_[i] = blocks_offsets_[i-1] + funcNTaks(i-1);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (n_tasks > max_n_tasks_) {
|
||||||
|
mem_blocks_.resize(n_tasks);
|
||||||
|
max_n_tasks_ = n_tasks;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// split row indexes (rid_span) to 2 parts (left_part, right_part) depending
|
||||||
|
// on comparison of indexes values (idx_span) and split point (split_cond)
|
||||||
|
// Handle dense columns
|
||||||
|
// Analog of std::stable_partition, but in no-inplace manner
|
||||||
|
template <bool default_left, bool any_missing, typename ColumnType>
|
||||||
|
inline std::pair<size_t, size_t> PartitionKernel(const ColumnType& column,
|
||||||
|
common::Span<const size_t> rid_span, const int32_t split_cond,
|
||||||
|
common::Span<size_t> left_part, common::Span<size_t> right_part) {
|
||||||
|
size_t* p_left_part = left_part.data();
|
||||||
|
size_t* p_right_part = right_part.data();
|
||||||
|
size_t nleft_elems = 0;
|
||||||
|
size_t nright_elems = 0;
|
||||||
|
auto state = column.GetInitialState(rid_span.front());
|
||||||
|
|
||||||
|
for (auto rid : rid_span) {
|
||||||
|
const int32_t bin_id = column.GetBinIdx(rid, &state);
|
||||||
|
if (any_missing && bin_id == ColumnType::kMissingId) {
|
||||||
|
if (default_left) {
|
||||||
|
p_left_part[nleft_elems++] = rid;
|
||||||
|
} else {
|
||||||
|
p_right_part[nright_elems++] = rid;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
if (bin_id <= split_cond) {
|
||||||
|
p_left_part[nleft_elems++] = rid;
|
||||||
|
} else {
|
||||||
|
p_right_part[nright_elems++] = rid;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return {nleft_elems, nright_elems};
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
template <typename BinIdxType, bool any_missing>
|
||||||
|
void Partition(const size_t node_in_set, const size_t nid, const common::Range1d range,
|
||||||
|
const int32_t split_cond,
|
||||||
|
const ColumnMatrix& column_matrix, const RegTree& tree, const size_t* rid) {
|
||||||
|
common::Span<const size_t> rid_span(rid + range.begin(), rid + range.end());
|
||||||
|
common::Span<size_t> left = GetLeftBuffer(node_in_set,
|
||||||
|
range.begin(), range.end());
|
||||||
|
common::Span<size_t> right = GetRightBuffer(node_in_set,
|
||||||
|
range.begin(), range.end());
|
||||||
|
const bst_uint fid = tree[nid].SplitIndex();
|
||||||
|
const bool default_left = tree[nid].DefaultLeft();
|
||||||
|
const auto column_ptr = column_matrix.GetColumn<BinIdxType, any_missing>(fid);
|
||||||
|
|
||||||
|
std::pair<size_t, size_t> child_nodes_sizes;
|
||||||
|
|
||||||
|
if (column_ptr->GetType() == xgboost::common::kDenseColumn) {
|
||||||
|
const common::DenseColumn<BinIdxType, any_missing>& column =
|
||||||
|
static_cast<const common::DenseColumn<BinIdxType, any_missing>& >(*(column_ptr.get()));
|
||||||
|
if (default_left) {
|
||||||
|
child_nodes_sizes = PartitionKernel<true, any_missing>(column, rid_span,
|
||||||
|
split_cond, left, right);
|
||||||
|
} else {
|
||||||
|
child_nodes_sizes = PartitionKernel<false, any_missing>(column, rid_span,
|
||||||
|
split_cond, left, right);
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
CHECK_EQ(any_missing, true);
|
||||||
|
const common::SparseColumn<BinIdxType>& column
|
||||||
|
= static_cast<const common::SparseColumn<BinIdxType>& >(*(column_ptr.get()));
|
||||||
|
if (default_left) {
|
||||||
|
child_nodes_sizes = PartitionKernel<true, any_missing>(column, rid_span,
|
||||||
|
split_cond, left, right);
|
||||||
|
} else {
|
||||||
|
child_nodes_sizes = PartitionKernel<false, any_missing>(column, rid_span,
|
||||||
|
split_cond, left, right);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
const size_t n_left = child_nodes_sizes.first;
|
||||||
|
const size_t n_right = child_nodes_sizes.second;
|
||||||
|
|
||||||
|
SetNLeftElems(node_in_set, range.begin(), range.end(), n_left);
|
||||||
|
SetNRightElems(node_in_set, range.begin(), range.end(), n_right);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
// allocate thread local memory, should be called for each specific task
|
||||||
|
void AllocateForTask(size_t id) {
|
||||||
|
if (mem_blocks_[id].get() == nullptr) {
|
||||||
|
BlockInfo* local_block_ptr = new BlockInfo;
|
||||||
|
CHECK_NE(local_block_ptr, (BlockInfo*)nullptr);
|
||||||
|
mem_blocks_[id].reset(local_block_ptr);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
common::Span<size_t> GetLeftBuffer(int nid, size_t begin, size_t end) {
|
||||||
|
const size_t task_idx = GetTaskIdx(nid, begin);
|
||||||
|
return { mem_blocks_.at(task_idx)->Left(), end - begin };
|
||||||
|
}
|
||||||
|
|
||||||
|
common::Span<size_t> GetRightBuffer(int nid, size_t begin, size_t end) {
|
||||||
|
const size_t task_idx = GetTaskIdx(nid, begin);
|
||||||
|
return { mem_blocks_.at(task_idx)->Right(), end - begin };
|
||||||
|
}
|
||||||
|
|
||||||
|
void SetNLeftElems(int nid, size_t begin, size_t end, size_t n_left) {
|
||||||
|
size_t task_idx = GetTaskIdx(nid, begin);
|
||||||
|
mem_blocks_.at(task_idx)->n_left = n_left;
|
||||||
|
}
|
||||||
|
|
||||||
|
void SetNRightElems(int nid, size_t begin, size_t end, size_t n_right) {
|
||||||
|
size_t task_idx = GetTaskIdx(nid, begin);
|
||||||
|
mem_blocks_.at(task_idx)->n_right = n_right;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
size_t GetNLeftElems(int nid) const {
|
||||||
|
return left_right_nodes_sizes_[nid].first;
|
||||||
|
}
|
||||||
|
|
||||||
|
size_t GetNRightElems(int nid) const {
|
||||||
|
return left_right_nodes_sizes_[nid].second;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Each thread has partial results for some set of tree-nodes
|
||||||
|
// The function decides order of merging partial results into final row set
|
||||||
|
void CalculateRowOffsets() {
|
||||||
|
for (size_t i = 0; i < blocks_offsets_.size()-1; ++i) {
|
||||||
|
size_t n_left = 0;
|
||||||
|
for (size_t j = blocks_offsets_[i]; j < blocks_offsets_[i+1]; ++j) {
|
||||||
|
mem_blocks_[j]->n_offset_left = n_left;
|
||||||
|
n_left += mem_blocks_[j]->n_left;
|
||||||
|
}
|
||||||
|
size_t n_right = 0;
|
||||||
|
for (size_t j = blocks_offsets_[i]; j < blocks_offsets_[i+1]; ++j) {
|
||||||
|
mem_blocks_[j]->n_offset_right = n_left + n_right;
|
||||||
|
n_right += mem_blocks_[j]->n_right;
|
||||||
|
}
|
||||||
|
left_right_nodes_sizes_[i] = {n_left, n_right};
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void MergeToArray(int nid, size_t begin, size_t* rows_indexes) {
|
||||||
|
size_t task_idx = GetTaskIdx(nid, begin);
|
||||||
|
|
||||||
|
size_t* left_result = rows_indexes + mem_blocks_[task_idx]->n_offset_left;
|
||||||
|
size_t* right_result = rows_indexes + mem_blocks_[task_idx]->n_offset_right;
|
||||||
|
|
||||||
|
const size_t* left = mem_blocks_[task_idx]->Left();
|
||||||
|
const size_t* right = mem_blocks_[task_idx]->Right();
|
||||||
|
|
||||||
|
std::copy_n(left, mem_blocks_[task_idx]->n_left, left_result);
|
||||||
|
std::copy_n(right, mem_blocks_[task_idx]->n_right, right_result);
|
||||||
|
}
|
||||||
|
|
||||||
|
size_t GetTaskIdx(int nid, size_t begin) {
|
||||||
|
return blocks_offsets_[nid] + begin / BlockSize;
|
||||||
|
}
|
||||||
|
|
||||||
|
protected:
|
||||||
|
struct BlockInfo{
|
||||||
|
size_t n_left;
|
||||||
|
size_t n_right;
|
||||||
|
|
||||||
|
size_t n_offset_left;
|
||||||
|
size_t n_offset_right;
|
||||||
|
|
||||||
|
size_t* Left() {
|
||||||
|
return &left_data_[0];
|
||||||
|
}
|
||||||
|
|
||||||
|
size_t* Right() {
|
||||||
|
return &right_data_[0];
|
||||||
|
}
|
||||||
|
private:
|
||||||
|
size_t left_data_[BlockSize];
|
||||||
|
size_t right_data_[BlockSize];
|
||||||
|
};
|
||||||
|
std::vector<std::pair<size_t, size_t>> left_right_nodes_sizes_;
|
||||||
|
std::vector<size_t> blocks_offsets_;
|
||||||
|
std::vector<std::shared_ptr<BlockInfo>> mem_blocks_;
|
||||||
|
size_t max_n_tasks_ = 0;
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace common
|
||||||
|
} // namespace xgboost
|
||||||
|
|
||||||
|
#endif // XGBOOST_COMMON_PARTITION_BUILDER_H_
|
||||||
@ -126,130 +126,6 @@ class RowSetCollection {
|
|||||||
std::vector<Elem> elem_of_each_node_;
|
std::vector<Elem> elem_of_each_node_;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
// The builder is required for samples partition to left and rights children for set of nodes
|
|
||||||
// Responsible for:
|
|
||||||
// 1) Effective memory allocation for intermediate results for multi-thread work
|
|
||||||
// 2) Merging partial results produced by threads into original row set (row_set_collection_)
|
|
||||||
// BlockSize is template to enable memory alignment easily with C++11 'alignas()' feature
|
|
||||||
template<size_t BlockSize>
|
|
||||||
class PartitionBuilder {
|
|
||||||
public:
|
|
||||||
template<typename Func>
|
|
||||||
void Init(const size_t n_tasks, size_t n_nodes, Func funcNTaks) {
|
|
||||||
left_right_nodes_sizes_.resize(n_nodes);
|
|
||||||
blocks_offsets_.resize(n_nodes+1);
|
|
||||||
|
|
||||||
blocks_offsets_[0] = 0;
|
|
||||||
for (size_t i = 1; i < n_nodes+1; ++i) {
|
|
||||||
blocks_offsets_[i] = blocks_offsets_[i-1] + funcNTaks(i-1);
|
|
||||||
}
|
|
||||||
|
|
||||||
if (n_tasks > max_n_tasks_) {
|
|
||||||
mem_blocks_.resize(n_tasks);
|
|
||||||
max_n_tasks_ = n_tasks;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// allocate thread local memory, should be called for each specific task
|
|
||||||
void AllocateForTask(size_t id) {
|
|
||||||
if (mem_blocks_[id].get() == nullptr) {
|
|
||||||
BlockInfo* local_block_ptr = new BlockInfo;
|
|
||||||
CHECK_NE(local_block_ptr, (BlockInfo*)nullptr);
|
|
||||||
mem_blocks_[id].reset(local_block_ptr);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
common::Span<size_t> GetLeftBuffer(int nid, size_t begin, size_t end) {
|
|
||||||
const size_t task_idx = GetTaskIdx(nid, begin);
|
|
||||||
return { mem_blocks_.at(task_idx)->Left(), end - begin };
|
|
||||||
}
|
|
||||||
|
|
||||||
common::Span<size_t> GetRightBuffer(int nid, size_t begin, size_t end) {
|
|
||||||
const size_t task_idx = GetTaskIdx(nid, begin);
|
|
||||||
return { mem_blocks_.at(task_idx)->Right(), end - begin };
|
|
||||||
}
|
|
||||||
|
|
||||||
void SetNLeftElems(int nid, size_t begin, size_t end, size_t n_left) {
|
|
||||||
size_t task_idx = GetTaskIdx(nid, begin);
|
|
||||||
mem_blocks_.at(task_idx)->n_left = n_left;
|
|
||||||
}
|
|
||||||
|
|
||||||
void SetNRightElems(int nid, size_t begin, size_t end, size_t n_right) {
|
|
||||||
size_t task_idx = GetTaskIdx(nid, begin);
|
|
||||||
mem_blocks_.at(task_idx)->n_right = n_right;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
size_t GetNLeftElems(int nid) const {
|
|
||||||
return left_right_nodes_sizes_[nid].first;
|
|
||||||
}
|
|
||||||
|
|
||||||
size_t GetNRightElems(int nid) const {
|
|
||||||
return left_right_nodes_sizes_[nid].second;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Each thread has partial results for some set of tree-nodes
|
|
||||||
// The function decides order of merging partial results into final row set
|
|
||||||
void CalculateRowOffsets() {
|
|
||||||
for (size_t i = 0; i < blocks_offsets_.size()-1; ++i) {
|
|
||||||
size_t n_left = 0;
|
|
||||||
for (size_t j = blocks_offsets_[i]; j < blocks_offsets_[i+1]; ++j) {
|
|
||||||
mem_blocks_[j]->n_offset_left = n_left;
|
|
||||||
n_left += mem_blocks_[j]->n_left;
|
|
||||||
}
|
|
||||||
size_t n_right = 0;
|
|
||||||
for (size_t j = blocks_offsets_[i]; j < blocks_offsets_[i+1]; ++j) {
|
|
||||||
mem_blocks_[j]->n_offset_right = n_left + n_right;
|
|
||||||
n_right += mem_blocks_[j]->n_right;
|
|
||||||
}
|
|
||||||
left_right_nodes_sizes_[i] = {n_left, n_right};
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void MergeToArray(int nid, size_t begin, size_t* rows_indexes) {
|
|
||||||
size_t task_idx = GetTaskIdx(nid, begin);
|
|
||||||
|
|
||||||
size_t* left_result = rows_indexes + mem_blocks_[task_idx]->n_offset_left;
|
|
||||||
size_t* right_result = rows_indexes + mem_blocks_[task_idx]->n_offset_right;
|
|
||||||
|
|
||||||
const size_t* left = mem_blocks_[task_idx]->Left();
|
|
||||||
const size_t* right = mem_blocks_[task_idx]->Right();
|
|
||||||
|
|
||||||
std::copy_n(left, mem_blocks_[task_idx]->n_left, left_result);
|
|
||||||
std::copy_n(right, mem_blocks_[task_idx]->n_right, right_result);
|
|
||||||
}
|
|
||||||
|
|
||||||
size_t GetTaskIdx(int nid, size_t begin) {
|
|
||||||
return blocks_offsets_[nid] + begin / BlockSize;
|
|
||||||
}
|
|
||||||
|
|
||||||
protected:
|
|
||||||
struct BlockInfo{
|
|
||||||
size_t n_left;
|
|
||||||
size_t n_right;
|
|
||||||
|
|
||||||
size_t n_offset_left;
|
|
||||||
size_t n_offset_right;
|
|
||||||
|
|
||||||
size_t* Left() {
|
|
||||||
return &left_data_[0];
|
|
||||||
}
|
|
||||||
|
|
||||||
size_t* Right() {
|
|
||||||
return &right_data_[0];
|
|
||||||
}
|
|
||||||
private:
|
|
||||||
size_t left_data_[BlockSize];
|
|
||||||
size_t right_data_[BlockSize];
|
|
||||||
};
|
|
||||||
std::vector<std::pair<size_t, size_t>> left_right_nodes_sizes_;
|
|
||||||
std::vector<size_t> blocks_offsets_;
|
|
||||||
std::vector<std::shared_ptr<BlockInfo>> mem_blocks_;
|
|
||||||
size_t max_n_tasks_ = 0;
|
|
||||||
};
|
|
||||||
|
|
||||||
|
|
||||||
} // namespace common
|
} // namespace common
|
||||||
} // namespace xgboost
|
} // namespace xgboost
|
||||||
|
|
||||||
|
|||||||
@ -290,6 +290,7 @@ void QuantileHistMaker::Builder<GradientSumT>::SetHistRowsAdder(
|
|||||||
}
|
}
|
||||||
|
|
||||||
template <typename GradientSumT>
|
template <typename GradientSumT>
|
||||||
|
template <bool any_missing>
|
||||||
void QuantileHistMaker::Builder<GradientSumT>::InitRoot(
|
void QuantileHistMaker::Builder<GradientSumT>::InitRoot(
|
||||||
const GHistIndexMatrix &gmat,
|
const GHistIndexMatrix &gmat,
|
||||||
const DMatrix& fmat,
|
const DMatrix& fmat,
|
||||||
@ -307,7 +308,7 @@ void QuantileHistMaker::Builder<GradientSumT>::InitRoot(
|
|||||||
int sync_count = 0;
|
int sync_count = 0;
|
||||||
|
|
||||||
hist_rows_adder_->AddHistRows(this, &starting_index, &sync_count, p_tree);
|
hist_rows_adder_->AddHistRows(this, &starting_index, &sync_count, p_tree);
|
||||||
BuildLocalHistograms(gmat, p_tree, gpair_h);
|
BuildLocalHistograms<any_missing>(gmat, p_tree, gpair_h);
|
||||||
hist_synchronizer_->SyncHistograms(this, starting_index, sync_count, p_tree);
|
hist_synchronizer_->SyncHistograms(this, starting_index, sync_count, p_tree);
|
||||||
|
|
||||||
this->InitNewNode(CPUExpandEntry::kRootNid, gmat, gpair_h, fmat, *p_tree);
|
this->InitNewNode(CPUExpandEntry::kRootNid, gmat, gpair_h, fmat, *p_tree);
|
||||||
@ -319,6 +320,7 @@ void QuantileHistMaker::Builder<GradientSumT>::InitRoot(
|
|||||||
}
|
}
|
||||||
|
|
||||||
template<typename GradientSumT>
|
template<typename GradientSumT>
|
||||||
|
template <bool any_missing>
|
||||||
void QuantileHistMaker::Builder<GradientSumT>::BuildLocalHistograms(
|
void QuantileHistMaker::Builder<GradientSumT>::BuildLocalHistograms(
|
||||||
const GHistIndexMatrix &gmat,
|
const GHistIndexMatrix &gmat,
|
||||||
RegTree *p_tree,
|
RegTree *p_tree,
|
||||||
@ -350,7 +352,8 @@ void QuantileHistMaker::Builder<GradientSumT>::BuildLocalHistograms(
|
|||||||
auto rid_set = RowSetCollection::Elem(start_of_row_set + r.begin(),
|
auto rid_set = RowSetCollection::Elem(start_of_row_set + r.begin(),
|
||||||
start_of_row_set + r.end(),
|
start_of_row_set + r.end(),
|
||||||
nid);
|
nid);
|
||||||
BuildHist(gpair_h, rid_set, gmat, hist_buffer_.GetInitializedHist(tid, nid_in_set));
|
hist_builder_.template BuildHist<any_missing>(gpair_h, rid_set, gmat,
|
||||||
|
hist_buffer_.GetInitializedHist(tid, nid_in_set));
|
||||||
});
|
});
|
||||||
|
|
||||||
builder_monitor_.Stop("BuildLocalHistograms");
|
builder_monitor_.Stop("BuildLocalHistograms");
|
||||||
@ -439,6 +442,7 @@ void QuantileHistMaker::Builder<GradientSumT>::BuildNodeStats(
|
|||||||
}
|
}
|
||||||
|
|
||||||
template<typename GradientSumT>
|
template<typename GradientSumT>
|
||||||
|
template <bool any_missing>
|
||||||
void QuantileHistMaker::Builder<GradientSumT>::ExpandTree(
|
void QuantileHistMaker::Builder<GradientSumT>::ExpandTree(
|
||||||
const GHistIndexMatrix& gmat,
|
const GHistIndexMatrix& gmat,
|
||||||
const ColumnMatrix& column_matrix,
|
const ColumnMatrix& column_matrix,
|
||||||
@ -450,7 +454,7 @@ void QuantileHistMaker::Builder<GradientSumT>::ExpandTree(
|
|||||||
|
|
||||||
Driver<CPUExpandEntry> driver(static_cast<TrainParam::TreeGrowPolicy>(param_.grow_policy));
|
Driver<CPUExpandEntry> driver(static_cast<TrainParam::TreeGrowPolicy>(param_.grow_policy));
|
||||||
std::vector<CPUExpandEntry> expand;
|
std::vector<CPUExpandEntry> expand;
|
||||||
InitRoot(gmat, *p_fmat, p_tree, gpair_h, &num_leaves, &expand);
|
InitRoot<any_missing>(gmat, *p_fmat, p_tree, gpair_h, &num_leaves, &expand);
|
||||||
driver.Push(expand[0]);
|
driver.Push(expand[0]);
|
||||||
|
|
||||||
int depth = 0;
|
int depth = 0;
|
||||||
@ -465,14 +469,14 @@ void QuantileHistMaker::Builder<GradientSumT>::ExpandTree(
|
|||||||
AddSplitsToTree(expand, p_tree, &num_leaves, &nodes_for_apply_split);
|
AddSplitsToTree(expand, p_tree, &num_leaves, &nodes_for_apply_split);
|
||||||
|
|
||||||
if (nodes_for_apply_split.size() != 0) {
|
if (nodes_for_apply_split.size() != 0) {
|
||||||
ApplySplit(nodes_for_apply_split, gmat, column_matrix, hist_, p_tree);
|
ApplySplit<any_missing>(nodes_for_apply_split, gmat, column_matrix, hist_, p_tree);
|
||||||
SplitSiblings(nodes_for_apply_split, &nodes_to_evaluate, p_tree);
|
SplitSiblings(nodes_for_apply_split, &nodes_to_evaluate, p_tree);
|
||||||
|
|
||||||
int starting_index = std::numeric_limits<int>::max();
|
int starting_index = std::numeric_limits<int>::max();
|
||||||
int sync_count = 0;
|
int sync_count = 0;
|
||||||
hist_rows_adder_->AddHistRows(this, &starting_index, &sync_count, p_tree);
|
hist_rows_adder_->AddHistRows(this, &starting_index, &sync_count, p_tree);
|
||||||
if (depth < param_.max_depth) {
|
if (depth < param_.max_depth) {
|
||||||
BuildLocalHistograms(gmat, p_tree, gpair_h);
|
BuildLocalHistograms<any_missing>(gmat, p_tree, gpair_h);
|
||||||
hist_synchronizer_->SyncHistograms(this, starting_index, sync_count, p_tree);
|
hist_synchronizer_->SyncHistograms(this, starting_index, sync_count, p_tree);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -520,8 +524,11 @@ void QuantileHistMaker::Builder<GradientSumT>::Update(
|
|||||||
|
|
||||||
this->InitData(gmat, *p_fmat, *p_tree, gpair_ptr);
|
this->InitData(gmat, *p_fmat, *p_tree, gpair_ptr);
|
||||||
|
|
||||||
ExpandTree(gmat, column_matrix, p_fmat, p_tree, *gpair_ptr);
|
if (column_matrix.AnyMissing()) {
|
||||||
|
ExpandTree<true>(gmat, column_matrix, p_fmat, p_tree, *gpair_ptr);
|
||||||
|
} else {
|
||||||
|
ExpandTree<false>(gmat, column_matrix, p_fmat, p_tree, *gpair_ptr);
|
||||||
|
}
|
||||||
for (int nid = 0; nid < p_tree->param.num_nodes; ++nid) {
|
for (int nid = 0; nid < p_tree->param.num_nodes; ++nid) {
|
||||||
p_tree->Stat(nid).loss_chg = snode_[nid].best.loss_chg;
|
p_tree->Stat(nid).loss_chg = snode_[nid].best.loss_chg;
|
||||||
p_tree->Stat(nid).base_weight = snode_[nid].weight;
|
p_tree->Stat(nid).base_weight = snode_[nid].weight;
|
||||||
@ -867,165 +874,6 @@ void QuantileHistMaker::Builder<GradientSumT>::EvaluateSplits(
|
|||||||
builder_monitor_.Stop("EvaluateSplits");
|
builder_monitor_.Stop("EvaluateSplits");
|
||||||
}
|
}
|
||||||
|
|
||||||
// split row indexes (rid_span) to 2 parts (left_part, right_part) depending
|
|
||||||
// on comparison of indexes values (idx_span) and split point (split_cond)
|
|
||||||
// Handle dense columns
|
|
||||||
// Analog of std::stable_partition, but in no-inplace manner
|
|
||||||
template <bool default_left, bool any_missing, typename BinIdxType>
|
|
||||||
inline std::pair<size_t, size_t> PartitionDenseKernel(const common::DenseColumn<BinIdxType>& column,
|
|
||||||
common::Span<const size_t> rid_span, const int32_t split_cond,
|
|
||||||
common::Span<size_t> left_part, common::Span<size_t> right_part) {
|
|
||||||
const int32_t offset = column.GetBaseIdx();
|
|
||||||
const BinIdxType* idx = column.GetFeatureBinIdxPtr().data();
|
|
||||||
size_t* p_left_part = left_part.data();
|
|
||||||
size_t* p_right_part = right_part.data();
|
|
||||||
size_t nleft_elems = 0;
|
|
||||||
size_t nright_elems = 0;
|
|
||||||
|
|
||||||
if (any_missing) {
|
|
||||||
for (auto rid : rid_span) {
|
|
||||||
if (column.IsMissing(rid)) {
|
|
||||||
if (default_left) {
|
|
||||||
p_left_part[nleft_elems++] = rid;
|
|
||||||
} else {
|
|
||||||
p_right_part[nright_elems++] = rid;
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
if ((static_cast<int32_t>(idx[rid]) + offset) <= split_cond) {
|
|
||||||
p_left_part[nleft_elems++] = rid;
|
|
||||||
} else {
|
|
||||||
p_right_part[nright_elems++] = rid;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
for (auto rid : rid_span) {
|
|
||||||
if ((static_cast<int32_t>(idx[rid]) + offset) <= split_cond) {
|
|
||||||
p_left_part[nleft_elems++] = rid;
|
|
||||||
} else {
|
|
||||||
p_right_part[nright_elems++] = rid;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return {nleft_elems, nright_elems};
|
|
||||||
}
|
|
||||||
|
|
||||||
// Split row indexes (rid_span) to 2 parts (left_part, right_part) depending
|
|
||||||
// on comparison of indexes values (idx_span) and split point (split_cond).
|
|
||||||
// Handle sparse columns
|
|
||||||
template<bool default_left, typename BinIdxType>
|
|
||||||
inline std::pair<size_t, size_t> PartitionSparseKernel(
|
|
||||||
const common::SparseColumn<BinIdxType>& column,
|
|
||||||
common::Span<const size_t> rid_span, const int32_t split_cond,
|
|
||||||
common::Span<size_t> left_part, common::Span<size_t> right_part) {
|
|
||||||
size_t* p_left_part = left_part.data();
|
|
||||||
size_t* p_right_part = right_part.data();
|
|
||||||
|
|
||||||
size_t nleft_elems = 0;
|
|
||||||
size_t nright_elems = 0;
|
|
||||||
const size_t* row_data = column.GetRowData();
|
|
||||||
const size_t column_size = column.Size();
|
|
||||||
if (rid_span.size()) { // ensure that rid_span is nonempty range
|
|
||||||
// search first nonzero row with index >= rid_span.front()
|
|
||||||
const size_t* p = std::lower_bound(row_data, row_data + column_size,
|
|
||||||
rid_span.front());
|
|
||||||
|
|
||||||
if (p != row_data + column_size && *p <= rid_span.back()) {
|
|
||||||
size_t cursor = p - row_data;
|
|
||||||
|
|
||||||
for (auto rid : rid_span) {
|
|
||||||
while (cursor < column_size
|
|
||||||
&& column.GetRowIdx(cursor) < rid
|
|
||||||
&& column.GetRowIdx(cursor) <= rid_span.back()) {
|
|
||||||
++cursor;
|
|
||||||
}
|
|
||||||
if (cursor < column_size && column.GetRowIdx(cursor) == rid) {
|
|
||||||
if (static_cast<int32_t>(column.GetGlobalBinIdx(cursor)) <= split_cond) {
|
|
||||||
p_left_part[nleft_elems++] = rid;
|
|
||||||
} else {
|
|
||||||
p_right_part[nright_elems++] = rid;
|
|
||||||
}
|
|
||||||
++cursor;
|
|
||||||
} else {
|
|
||||||
// missing value
|
|
||||||
if (default_left) {
|
|
||||||
p_left_part[nleft_elems++] = rid;
|
|
||||||
} else {
|
|
||||||
p_right_part[nright_elems++] = rid;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
} else { // all rows in rid_span have missing values
|
|
||||||
if (default_left) {
|
|
||||||
std::copy(rid_span.begin(), rid_span.end(), p_left_part);
|
|
||||||
nleft_elems = rid_span.size();
|
|
||||||
} else {
|
|
||||||
std::copy(rid_span.begin(), rid_span.end(), p_right_part);
|
|
||||||
nright_elems = rid_span.size();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
return {nleft_elems, nright_elems};
|
|
||||||
}
|
|
||||||
|
|
||||||
template <typename GradientSumT>
|
|
||||||
template <typename BinIdxType>
|
|
||||||
void QuantileHistMaker::Builder<GradientSumT>::PartitionKernel(
|
|
||||||
const size_t node_in_set, const size_t nid, const common::Range1d range,
|
|
||||||
const int32_t split_cond, const ColumnMatrix& column_matrix, const RegTree& tree) {
|
|
||||||
const size_t* rid = row_set_collection_[nid].begin;
|
|
||||||
|
|
||||||
common::Span<const size_t> rid_span(rid + range.begin(), rid + range.end());
|
|
||||||
common::Span<size_t> left = partition_builder_.GetLeftBuffer(node_in_set,
|
|
||||||
range.begin(), range.end());
|
|
||||||
common::Span<size_t> right = partition_builder_.GetRightBuffer(node_in_set,
|
|
||||||
range.begin(), range.end());
|
|
||||||
const bst_uint fid = tree[nid].SplitIndex();
|
|
||||||
const bool default_left = tree[nid].DefaultLeft();
|
|
||||||
const auto column_ptr = column_matrix.GetColumn<BinIdxType>(fid);
|
|
||||||
|
|
||||||
std::pair<size_t, size_t> child_nodes_sizes;
|
|
||||||
|
|
||||||
if (column_ptr->GetType() == xgboost::common::kDenseColumn) {
|
|
||||||
const common::DenseColumn<BinIdxType>& column =
|
|
||||||
static_cast<const common::DenseColumn<BinIdxType>& >(*(column_ptr.get()));
|
|
||||||
if (default_left) {
|
|
||||||
if (column_matrix.AnyMissing()) {
|
|
||||||
child_nodes_sizes = PartitionDenseKernel<true, true>(column, rid_span,
|
|
||||||
split_cond, left, right);
|
|
||||||
} else {
|
|
||||||
child_nodes_sizes = PartitionDenseKernel<true, false>(column, rid_span,
|
|
||||||
split_cond, left, right);
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
if (column_matrix.AnyMissing()) {
|
|
||||||
child_nodes_sizes = PartitionDenseKernel<false, true>(column, rid_span,
|
|
||||||
split_cond, left, right);
|
|
||||||
} else {
|
|
||||||
child_nodes_sizes = PartitionDenseKernel<false, false>(column, rid_span,
|
|
||||||
split_cond, left, right);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
const common::SparseColumn<BinIdxType>& column
|
|
||||||
= static_cast<const common::SparseColumn<BinIdxType>& >(*(column_ptr.get()));
|
|
||||||
if (default_left) {
|
|
||||||
child_nodes_sizes = PartitionSparseKernel<true>(column, rid_span,
|
|
||||||
split_cond, left, right);
|
|
||||||
} else {
|
|
||||||
child_nodes_sizes = PartitionSparseKernel<false>(column, rid_span,
|
|
||||||
split_cond, left, right);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
const size_t n_left = child_nodes_sizes.first;
|
|
||||||
const size_t n_right = child_nodes_sizes.second;
|
|
||||||
|
|
||||||
partition_builder_.SetNLeftElems(node_in_set, range.begin(), range.end(), n_left);
|
|
||||||
partition_builder_.SetNRightElems(node_in_set, range.begin(), range.end(), n_right);
|
|
||||||
}
|
|
||||||
|
|
||||||
template <typename GradientSumT>
|
template <typename GradientSumT>
|
||||||
void QuantileHistMaker::Builder<GradientSumT>::FindSplitConditions(
|
void QuantileHistMaker::Builder<GradientSumT>::FindSplitConditions(
|
||||||
const std::vector<CPUExpandEntry>& nodes,
|
const std::vector<CPUExpandEntry>& nodes,
|
||||||
@ -1070,6 +918,7 @@ void QuantileHistMaker::Builder<GradientSumT>::AddSplitsToRowSet(
|
|||||||
}
|
}
|
||||||
|
|
||||||
template <typename GradientSumT>
|
template <typename GradientSumT>
|
||||||
|
template <bool any_missing>
|
||||||
void QuantileHistMaker::Builder<GradientSumT>::ApplySplit(const std::vector<CPUExpandEntry> nodes,
|
void QuantileHistMaker::Builder<GradientSumT>::ApplySplit(const std::vector<CPUExpandEntry> nodes,
|
||||||
const GHistIndexMatrix& gmat,
|
const GHistIndexMatrix& gmat,
|
||||||
const ColumnMatrix& column_matrix,
|
const ColumnMatrix& column_matrix,
|
||||||
@ -1102,16 +951,19 @@ void QuantileHistMaker::Builder<GradientSumT>::ApplySplit(const std::vector<CPUE
|
|||||||
partition_builder_.AllocateForTask(task_id);
|
partition_builder_.AllocateForTask(task_id);
|
||||||
switch (column_matrix.GetTypeSize()) {
|
switch (column_matrix.GetTypeSize()) {
|
||||||
case common::kUint8BinsTypeSize:
|
case common::kUint8BinsTypeSize:
|
||||||
PartitionKernel<uint8_t>(node_in_set, nid, r,
|
partition_builder_.template Partition<uint8_t, any_missing>(node_in_set, nid, r,
|
||||||
split_conditions[node_in_set], column_matrix, *p_tree);
|
split_conditions[node_in_set], column_matrix,
|
||||||
|
*p_tree, row_set_collection_[nid].begin);
|
||||||
break;
|
break;
|
||||||
case common::kUint16BinsTypeSize:
|
case common::kUint16BinsTypeSize:
|
||||||
PartitionKernel<uint16_t>(node_in_set, nid, r,
|
partition_builder_.template Partition<uint16_t, any_missing>(node_in_set, nid, r,
|
||||||
split_conditions[node_in_set], column_matrix, *p_tree);
|
split_conditions[node_in_set], column_matrix,
|
||||||
|
*p_tree, row_set_collection_[nid].begin);
|
||||||
break;
|
break;
|
||||||
case common::kUint32BinsTypeSize:
|
case common::kUint32BinsTypeSize:
|
||||||
PartitionKernel<uint32_t>(node_in_set, nid, r,
|
partition_builder_.template Partition<uint32_t, any_missing>(node_in_set, nid, r,
|
||||||
split_conditions[node_in_set], column_matrix, *p_tree);
|
split_conditions[node_in_set], column_matrix,
|
||||||
|
*p_tree, row_set_collection_[nid].begin);
|
||||||
break;
|
break;
|
||||||
default:
|
default:
|
||||||
CHECK(false); // no default behavior
|
CHECK(false); // no default behavior
|
||||||
@ -1268,24 +1120,6 @@ GradStats QuantileHistMaker::Builder<GradientSumT>::EnumerateSplit(
|
|||||||
|
|
||||||
template struct QuantileHistMaker::Builder<float>;
|
template struct QuantileHistMaker::Builder<float>;
|
||||||
template struct QuantileHistMaker::Builder<double>;
|
template struct QuantileHistMaker::Builder<double>;
|
||||||
template void QuantileHistMaker::Builder<float>::PartitionKernel<uint8_t>(
|
|
||||||
const size_t node_in_set, const size_t nid, common::Range1d range,
|
|
||||||
const int32_t split_cond, const ColumnMatrix& column_matrix, const RegTree& tree);
|
|
||||||
template void QuantileHistMaker::Builder<float>::PartitionKernel<uint16_t>(
|
|
||||||
const size_t node_in_set, const size_t nid, common::Range1d range,
|
|
||||||
const int32_t split_cond, const ColumnMatrix& column_matrix, const RegTree& tree);
|
|
||||||
template void QuantileHistMaker::Builder<float>::PartitionKernel<uint32_t>(
|
|
||||||
const size_t node_in_set, const size_t nid, common::Range1d range,
|
|
||||||
const int32_t split_cond, const ColumnMatrix& column_matrix, const RegTree& tree);
|
|
||||||
template void QuantileHistMaker::Builder<double>::PartitionKernel<uint8_t>(
|
|
||||||
const size_t node_in_set, const size_t nid, common::Range1d range,
|
|
||||||
const int32_t split_cond, const ColumnMatrix& column_matrix, const RegTree& tree);
|
|
||||||
template void QuantileHistMaker::Builder<double>::PartitionKernel<uint16_t>(
|
|
||||||
const size_t node_in_set, const size_t nid, common::Range1d range,
|
|
||||||
const int32_t split_cond, const ColumnMatrix& column_matrix, const RegTree& tree);
|
|
||||||
template void QuantileHistMaker::Builder<double>::PartitionKernel<uint32_t>(
|
|
||||||
const size_t node_in_set, const size_t nid, common::Range1d range,
|
|
||||||
const int32_t split_cond, const ColumnMatrix& column_matrix, const RegTree& tree);
|
|
||||||
|
|
||||||
XGBOOST_REGISTER_TREE_UPDATER(FastHistMaker, "grow_fast_histmaker")
|
XGBOOST_REGISTER_TREE_UPDATER(FastHistMaker, "grow_fast_histmaker")
|
||||||
.describe("(Deprecated, use grow_quantile_histmaker instead.)"
|
.describe("(Deprecated, use grow_quantile_histmaker instead.)"
|
||||||
|
|||||||
@ -28,6 +28,7 @@
|
|||||||
#include "../common/timer.h"
|
#include "../common/timer.h"
|
||||||
#include "../common/hist_util.h"
|
#include "../common/hist_util.h"
|
||||||
#include "../common/row_set.h"
|
#include "../common/row_set.h"
|
||||||
|
#include "../common/partition_builder.h"
|
||||||
#include "../common/column_matrix.h"
|
#include "../common/column_matrix.h"
|
||||||
|
|
||||||
namespace xgboost {
|
namespace xgboost {
|
||||||
@ -291,14 +292,6 @@ class QuantileHistMaker: public TreeUpdater {
|
|||||||
DMatrix* p_fmat,
|
DMatrix* p_fmat,
|
||||||
RegTree* p_tree);
|
RegTree* p_tree);
|
||||||
|
|
||||||
inline void BuildHist(const std::vector<GradientPair>& gpair,
|
|
||||||
const RowSetCollection::Elem row_indices,
|
|
||||||
const GHistIndexMatrix& gmat,
|
|
||||||
GHistRowT hist) {
|
|
||||||
hist_builder_.BuildHist(gpair, row_indices, gmat, hist,
|
|
||||||
data_layout_ != DataLayout::kSparseData);
|
|
||||||
}
|
|
||||||
|
|
||||||
inline void SubtractionTrick(GHistRowT self,
|
inline void SubtractionTrick(GHistRowT self,
|
||||||
GHistRowT sibling,
|
GHistRowT sibling,
|
||||||
GHistRowT parent) {
|
GHistRowT parent) {
|
||||||
@ -338,17 +331,13 @@ class QuantileHistMaker: public TreeUpdater {
|
|||||||
const HistCollection<GradientSumT>& hist,
|
const HistCollection<GradientSumT>& hist,
|
||||||
const RegTree& tree);
|
const RegTree& tree);
|
||||||
|
|
||||||
|
template <bool any_missing>
|
||||||
void ApplySplit(std::vector<CPUExpandEntry> nodes,
|
void ApplySplit(std::vector<CPUExpandEntry> nodes,
|
||||||
const GHistIndexMatrix& gmat,
|
const GHistIndexMatrix& gmat,
|
||||||
const ColumnMatrix& column_matrix,
|
const ColumnMatrix& column_matrix,
|
||||||
const HistCollection<GradientSumT>& hist,
|
const HistCollection<GradientSumT>& hist,
|
||||||
RegTree* p_tree);
|
RegTree* p_tree);
|
||||||
|
|
||||||
template <typename BinIdxType>
|
|
||||||
void PartitionKernel(const size_t node_in_set, const size_t nid, const common::Range1d range,
|
|
||||||
const int32_t split_cond,
|
|
||||||
const ColumnMatrix& column_matrix, const RegTree& tree);
|
|
||||||
|
|
||||||
void AddSplitsToRowSet(const std::vector<CPUExpandEntry>& nodes, RegTree* p_tree);
|
void AddSplitsToRowSet(const std::vector<CPUExpandEntry>& nodes, RegTree* p_tree);
|
||||||
|
|
||||||
|
|
||||||
@ -376,10 +365,11 @@ class QuantileHistMaker: public TreeUpdater {
|
|||||||
// else - there are missing values
|
// else - there are missing values
|
||||||
bool SplitContainsMissingValues(const GradStats e, const NodeEntry& snode);
|
bool SplitContainsMissingValues(const GradStats e, const NodeEntry& snode);
|
||||||
|
|
||||||
|
template <bool any_missing>
|
||||||
void BuildLocalHistograms(const GHistIndexMatrix &gmat,
|
void BuildLocalHistograms(const GHistIndexMatrix &gmat,
|
||||||
RegTree *p_tree,
|
RegTree *p_tree,
|
||||||
const std::vector<GradientPair> &gpair_h);
|
const std::vector<GradientPair> &gpair_h);
|
||||||
|
template <bool any_missing>
|
||||||
void InitRoot(const GHistIndexMatrix &gmat,
|
void InitRoot(const GHistIndexMatrix &gmat,
|
||||||
const DMatrix& fmat,
|
const DMatrix& fmat,
|
||||||
RegTree *p_tree,
|
RegTree *p_tree,
|
||||||
@ -402,7 +392,7 @@ class QuantileHistMaker: public TreeUpdater {
|
|||||||
const DMatrix& fmat,
|
const DMatrix& fmat,
|
||||||
const std::vector<GradientPair> &gpair_h,
|
const std::vector<GradientPair> &gpair_h,
|
||||||
const std::vector<CPUExpandEntry>& nodes_for_apply_split, RegTree *p_tree);
|
const std::vector<CPUExpandEntry>& nodes_for_apply_split, RegTree *p_tree);
|
||||||
|
template <bool any_missing>
|
||||||
void ExpandTree(const GHistIndexMatrix& gmat,
|
void ExpandTree(const GHistIndexMatrix& gmat,
|
||||||
const ColumnMatrix& column_matrix,
|
const ColumnMatrix& column_matrix,
|
||||||
DMatrix* p_fmat,
|
DMatrix* p_fmat,
|
||||||
|
|||||||
@ -23,19 +23,19 @@ TEST(DenseColumn, Test) {
|
|||||||
for (auto j = 0ull; j < dmat->Info().num_col_; j++) {
|
for (auto j = 0ull; j < dmat->Info().num_col_; j++) {
|
||||||
switch (column_matrix.GetTypeSize()) {
|
switch (column_matrix.GetTypeSize()) {
|
||||||
case kUint8BinsTypeSize: {
|
case kUint8BinsTypeSize: {
|
||||||
auto col = column_matrix.GetColumn<uint8_t>(j);
|
auto col = column_matrix.GetColumn<uint8_t, false>(j);
|
||||||
ASSERT_EQ(gmat.index[i * dmat->Info().num_col_ + j],
|
ASSERT_EQ(gmat.index[i * dmat->Info().num_col_ + j],
|
||||||
(*col.get()).GetGlobalBinIdx(i));
|
(*col.get()).GetGlobalBinIdx(i));
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
case kUint16BinsTypeSize: {
|
case kUint16BinsTypeSize: {
|
||||||
auto col = column_matrix.GetColumn<uint16_t>(j);
|
auto col = column_matrix.GetColumn<uint16_t, false>(j);
|
||||||
ASSERT_EQ(gmat.index[i * dmat->Info().num_col_ + j],
|
ASSERT_EQ(gmat.index[i * dmat->Info().num_col_ + j],
|
||||||
(*col.get()).GetGlobalBinIdx(i));
|
(*col.get()).GetGlobalBinIdx(i));
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
case kUint32BinsTypeSize: {
|
case kUint32BinsTypeSize: {
|
||||||
auto col = column_matrix.GetColumn<uint32_t>(j);
|
auto col = column_matrix.GetColumn<uint32_t, false>(j);
|
||||||
ASSERT_EQ(gmat.index[i * dmat->Info().num_col_ + j],
|
ASSERT_EQ(gmat.index[i * dmat->Info().num_col_ + j],
|
||||||
(*col.get()).GetGlobalBinIdx(i));
|
(*col.get()).GetGlobalBinIdx(i));
|
||||||
}
|
}
|
||||||
@ -68,17 +68,17 @@ TEST(SparseColumn, Test) {
|
|||||||
column_matrix.Init(gmat, 0.5);
|
column_matrix.Init(gmat, 0.5);
|
||||||
switch (column_matrix.GetTypeSize()) {
|
switch (column_matrix.GetTypeSize()) {
|
||||||
case kUint8BinsTypeSize: {
|
case kUint8BinsTypeSize: {
|
||||||
auto col = column_matrix.GetColumn<uint8_t>(0);
|
auto col = column_matrix.GetColumn<uint8_t, true>(0);
|
||||||
CheckSparseColumn(*col.get(), gmat);
|
CheckSparseColumn(*col.get(), gmat);
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
case kUint16BinsTypeSize: {
|
case kUint16BinsTypeSize: {
|
||||||
auto col = column_matrix.GetColumn<uint16_t>(0);
|
auto col = column_matrix.GetColumn<uint16_t, true>(0);
|
||||||
CheckSparseColumn(*col.get(), gmat);
|
CheckSparseColumn(*col.get(), gmat);
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
case kUint32BinsTypeSize: {
|
case kUint32BinsTypeSize: {
|
||||||
auto col = column_matrix.GetColumn<uint32_t>(0);
|
auto col = column_matrix.GetColumn<uint32_t, true>(0);
|
||||||
CheckSparseColumn(*col.get(), gmat);
|
CheckSparseColumn(*col.get(), gmat);
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
@ -89,7 +89,7 @@ TEST(SparseColumn, Test) {
|
|||||||
template<typename BinIdxType>
|
template<typename BinIdxType>
|
||||||
inline void CheckColumWithMissingValue(const Column<BinIdxType>& col_input,
|
inline void CheckColumWithMissingValue(const Column<BinIdxType>& col_input,
|
||||||
const GHistIndexMatrix& gmat) {
|
const GHistIndexMatrix& gmat) {
|
||||||
const DenseColumn<BinIdxType>& col = static_cast<const DenseColumn<BinIdxType>& >(col_input);
|
const DenseColumn<BinIdxType, true>& col = static_cast<const DenseColumn<BinIdxType, true>& >(col_input);
|
||||||
for (auto i = 0ull; i < col.Size(); i++) {
|
for (auto i = 0ull; i < col.Size(); i++) {
|
||||||
if (col.IsMissing(i)) continue;
|
if (col.IsMissing(i)) continue;
|
||||||
EXPECT_EQ(gmat.index[gmat.row_ptr[i]],
|
EXPECT_EQ(gmat.index[gmat.row_ptr[i]],
|
||||||
@ -109,17 +109,17 @@ TEST(DenseColumnWithMissing, Test) {
|
|||||||
column_matrix.Init(gmat, 0.2);
|
column_matrix.Init(gmat, 0.2);
|
||||||
switch (column_matrix.GetTypeSize()) {
|
switch (column_matrix.GetTypeSize()) {
|
||||||
case kUint8BinsTypeSize: {
|
case kUint8BinsTypeSize: {
|
||||||
auto col = column_matrix.GetColumn<uint8_t>(0);
|
auto col = column_matrix.GetColumn<uint8_t, true>(0);
|
||||||
CheckColumWithMissingValue(*col.get(), gmat);
|
CheckColumWithMissingValue(*col.get(), gmat);
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
case kUint16BinsTypeSize: {
|
case kUint16BinsTypeSize: {
|
||||||
auto col = column_matrix.GetColumn<uint16_t>(0);
|
auto col = column_matrix.GetColumn<uint16_t, true>(0);
|
||||||
CheckColumWithMissingValue(*col.get(), gmat);
|
CheckColumWithMissingValue(*col.get(), gmat);
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
case kUint32BinsTypeSize: {
|
case kUint32BinsTypeSize: {
|
||||||
auto col = column_matrix.GetColumn<uint32_t>(0);
|
auto col = column_matrix.GetColumn<uint32_t, true>(0);
|
||||||
CheckColumWithMissingValue(*col.get(), gmat);
|
CheckColumWithMissingValue(*col.get(), gmat);
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
|
|||||||
@ -4,6 +4,7 @@
|
|||||||
#include <utility>
|
#include <utility>
|
||||||
|
|
||||||
#include "../../../src/common/row_set.h"
|
#include "../../../src/common/row_set.h"
|
||||||
|
#include "../../../src/common/partition_builder.h"
|
||||||
#include "../helpers.h"
|
#include "../helpers.h"
|
||||||
|
|
||||||
namespace xgboost {
|
namespace xgboost {
|
||||||
|
|||||||
@ -309,7 +309,7 @@ class QuantileHistMock : public QuantileHistMaker {
|
|||||||
RealImpl::InitData(gmat, fmat, tree, &gpair);
|
RealImpl::InitData(gmat, fmat, tree, &gpair);
|
||||||
this->hist_.AddHistRow(nid);
|
this->hist_.AddHistRow(nid);
|
||||||
this->hist_.AllocateAllData();
|
this->hist_.AllocateAllData();
|
||||||
this->BuildHist(gpair, this->row_set_collection_[nid],
|
this->hist_builder_.template BuildHist<true>(gpair, this->row_set_collection_[nid],
|
||||||
gmat, this->hist_[nid]);
|
gmat, this->hist_[nid]);
|
||||||
|
|
||||||
// Check if number of histogram bins is correct
|
// Check if number of histogram bins is correct
|
||||||
@ -350,7 +350,7 @@ class QuantileHistMock : public QuantileHistMaker {
|
|||||||
RealImpl::InitData(gmat, *dmat, tree, &row_gpairs);
|
RealImpl::InitData(gmat, *dmat, tree, &row_gpairs);
|
||||||
this->hist_.AddHistRow(0);
|
this->hist_.AddHistRow(0);
|
||||||
this->hist_.AllocateAllData();
|
this->hist_.AllocateAllData();
|
||||||
this->BuildHist(row_gpairs, this->row_set_collection_[0],
|
this->hist_builder_.template BuildHist<false>(row_gpairs, this->row_set_collection_[0],
|
||||||
gmat, this->hist_[0]);
|
gmat, this->hist_[0]);
|
||||||
|
|
||||||
RealImpl::InitNewNode(0, gmat, row_gpairs, *dmat, tree);
|
RealImpl::InitNewNode(0, gmat, row_gpairs, *dmat, tree);
|
||||||
@ -482,8 +482,13 @@ class QuantileHistMock : public QuantileHistMaker {
|
|||||||
});
|
});
|
||||||
const size_t task_id = RealImpl::partition_builder_.GetTaskIdx(0, 0);
|
const size_t task_id = RealImpl::partition_builder_.GetTaskIdx(0, 0);
|
||||||
RealImpl::partition_builder_.AllocateForTask(task_id);
|
RealImpl::partition_builder_.AllocateForTask(task_id);
|
||||||
this->template PartitionKernel<uint8_t>(0, 0, common::Range1d(0, kNRows),
|
if (cm.AnyMissing()) {
|
||||||
split, cm, tree);
|
RealImpl::partition_builder_.template Partition<uint8_t, true>(0, 0, common::Range1d(0, kNRows),
|
||||||
|
split, cm, tree, this->row_set_collection_[0].begin);
|
||||||
|
} else {
|
||||||
|
RealImpl::partition_builder_.template Partition<uint8_t, false>(0, 0, common::Range1d(0, kNRows),
|
||||||
|
split, cm, tree, this->row_set_collection_[0].begin);
|
||||||
|
}
|
||||||
RealImpl::partition_builder_.CalculateRowOffsets();
|
RealImpl::partition_builder_.CalculateRowOffsets();
|
||||||
ASSERT_EQ(RealImpl::partition_builder_.GetNLeftElems(0), left_cnt);
|
ASSERT_EQ(RealImpl::partition_builder_.GetNLeftElems(0), left_cnt);
|
||||||
ASSERT_EQ(RealImpl::partition_builder_.GetNRightElems(0), right_cnt);
|
ASSERT_EQ(RealImpl::partition_builder_.GetNRightElems(0), right_cnt);
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user