Use Span in gpu coordinate. (#4029)

* Use Span in gpu coordinate.

* Use Span in device code.
* Fix shard size calculation.
  - Use lower_bound instead of upper_bound.
* Check empty devices.
This commit is contained in:
Jiaming Yuan 2019-01-02 11:32:43 +08:00 committed by GitHub
parent f368d0de2b
commit 1f022929f4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 62 additions and 36 deletions

View File

@ -621,8 +621,8 @@ XGBOOST_DEVICE auto as_writable_bytes(Span<T, E> s) __span_noexcept -> // NOLIN
return {reinterpret_cast<byte*>(s.data()), s.size_bytes()};
}
} // namespace common
} // namespace xgboost
} // namespace common NOLINT
} // namespace xgboost NOLINT
#if defined(_MSC_VER) &&_MSC_VER < 1910
#undef constexpr

View File

@ -5,8 +5,10 @@
#include <thrust/execution_policy.h>
#include <thrust/inner_product.h>
#include <xgboost/data.h>
#include <xgboost/linear_updater.h>
#include "../common/common.h"
#include "../common/span.h"
#include "../common/device_helpers.cuh"
#include "../common/timer.h"
#include "./param.h"
@ -17,8 +19,8 @@ namespace linear {
DMLC_REGISTRY_FILE_TAG(updater_gpu_coordinate);
void RescaleIndices(size_t ridx_begin, dh::DVec<Entry> *data) {
auto d_data = data->Data();
void RescaleIndices(size_t ridx_begin, dh::DVec<xgboost::Entry> *data) {
auto d_data = data->GetSpan();
dh::LaunchN(data->DeviceIdx(), data->Size(),
[=] __device__(size_t idx) { d_data[idx].index -= ridx_begin; });
}
@ -27,57 +29,66 @@ class DeviceShard {
int device_id_;
dh::BulkAllocator<dh::MemoryType::kDevice> ba_;
std::vector<size_t> row_ptr_;
dh::DVec<Entry> data_;
dh::DVec<xgboost::Entry> data_;
dh::DVec<GradientPair> gpair_;
dh::CubMemory temp_;
size_t ridx_begin_;
size_t ridx_end_;
public:
DeviceShard(int device_id, const SparsePage &batch,
DeviceShard(int device_id,
const SparsePage &batch, // column batch
bst_uint row_begin, bst_uint row_end,
const LinearTrainParam &param,
const gbm::GBLinearModelParam &model_param)
: device_id_(device_id),
ridx_begin_(row_begin),
ridx_end_(row_end) {
if ( IsEmpty() ) { return; }
dh::safe_cuda(cudaSetDevice(device_id_));
// The begin and end indices for the section of each column associated with
// this shard
std::vector<std::pair<bst_uint, bst_uint>> column_segments;
row_ptr_ = {0};
// iterate through columns
for (auto fidx = 0; fidx < batch.Size(); fidx++) {
auto col = batch[fidx];
common::Span<Entry const> col = batch[fidx];
auto cmp = [](Entry e1, Entry e2) {
return e1.index < e2.index;
};
auto column_begin =
std::lower_bound(col.data(), col.data() + col.size(),
Entry(row_begin, 0.0f), cmp);
std::lower_bound(col.cbegin(), col.cend(),
xgboost::Entry(row_begin, 0.0f), cmp);
auto column_end =
std::upper_bound(col.data(), col.data() + col.size(),
Entry(row_end, 0.0f), cmp);
std::lower_bound(col.cbegin(), col.cend(),
xgboost::Entry(row_end, 0.0f), cmp);
column_segments.push_back(
std::make_pair(column_begin - col.data(), column_end - col.data()));
row_ptr_.push_back(row_ptr_.back() + column_end - column_begin);
std::make_pair(column_begin - col.cbegin(), column_end - col.cbegin()));
row_ptr_.push_back(row_ptr_.back() + (column_end - column_begin));
}
ba_.Allocate(device_id_, &data_, row_ptr_.back(), &gpair_,
(row_end - row_begin) * model_param.num_output_group);
(row_end - row_begin) * model_param.num_output_group);
for (int fidx = 0; fidx < batch.Size(); fidx++) {
auto col = batch[fidx];
auto seg = column_segments[fidx];
dh::safe_cuda(cudaMemcpy(
data_.Data() + row_ptr_[fidx], col.data() + seg.first,
data_.GetSpan().subspan(row_ptr_[fidx]).data(),
col.data() + seg.first,
sizeof(Entry) * (seg.second - seg.first), cudaMemcpyHostToDevice));
}
// Rescale indices with respect to current shard
RescaleIndices(ridx_begin_, &data_);
}
bool IsEmpty() {
return (ridx_end_ - ridx_begin_) == 0;
}
void UpdateGpair(const std::vector<GradientPair> &host_gpair,
const gbm::GBLinearModelParam &model_param) {
gpair_.copy(host_gpair.begin() + ridx_begin_ * model_param.num_output_group,
host_gpair.begin() + ridx_end_ * model_param.num_output_group);
host_gpair.begin() + ridx_end_ * model_param.num_output_group);
}
GradientPair GetBiasGradient(int group_idx, int num_group) {
@ -95,7 +106,7 @@ class DeviceShard {
void UpdateBiasResidual(float dbias, int group_idx, int num_groups) {
if (dbias == 0.0f) return;
auto d_gpair = gpair_.Data();
auto d_gpair = gpair_.GetSpan();
dh::LaunchN(device_id_, ridx_end_ - ridx_begin_, [=] __device__(size_t idx) {
auto &g = d_gpair[idx * num_groups + group_idx];
g += GradientPair(g.GetHess() * dbias, 0);
@ -104,9 +115,9 @@ class DeviceShard {
GradientPair GetGradient(int group_idx, int num_group, int fidx) {
dh::safe_cuda(cudaSetDevice(device_id_));
auto d_col = data_.Data() + row_ptr_[fidx];
common::Span<xgboost::Entry> d_col = data_.GetSpan().subspan(row_ptr_[fidx]);
size_t col_size = row_ptr_[fidx + 1] - row_ptr_[fidx];
auto d_gpair = gpair_.Data();
common::Span<GradientPair> d_gpair = gpair_.GetSpan();
auto counting = thrust::make_counting_iterator(0ull);
auto f = [=] __device__(size_t idx) {
auto entry = d_col[idx];
@ -120,8 +131,8 @@ class DeviceShard {
}
void UpdateResidual(float dw, int group_idx, int num_groups, int fidx) {
auto d_gpair = gpair_.Data();
auto d_col = data_.Data() + row_ptr_[fidx];
common::Span<GradientPair> d_gpair = gpair_.GetSpan();
common::Span<Entry> d_col = data_.GetSpan().subspan(row_ptr_[fidx]);
size_t col_size = row_ptr_[fidx + 1] - row_ptr_[fidx];
dh::LaunchN(device_id_, col_size, [=] __device__(size_t idx) {
auto entry = d_col[idx];
@ -158,21 +169,19 @@ class GPUCoordinateUpdater : public LinearUpdater {
size_t n_devices = static_cast<size_t>(devices.Size());
size_t row_begin = 0;
size_t num_row = static_cast<size_t>(p_fmat->Info().num_row_);
// Use fast integer ceiling
// See https://stackoverflow.com/a/2745086
size_t shard_size = (num_row + n_devices - 1) / n_devices;
// Partition input matrix into row segments
std::vector<size_t> row_segments;
row_segments.push_back(0);
for (int d_idx = 0; d_idx < n_devices; ++d_idx) {
size_t row_end = std::min(row_begin + shard_size, num_row);
size_t shard_size = dist_.ShardSize(num_row, d_idx);
size_t row_end = row_begin + shard_size;
row_segments.push_back(row_end);
row_begin = row_end;
}
CHECK(p_fmat->SingleColBlock());
const auto &batch = *p_fmat->GetColumnBatches().begin();
SparsePage const& batch = *(p_fmat->GetColumnBatches().begin());
shards.resize(n_devices);
// Create device shards
@ -194,7 +203,9 @@ class GPUCoordinateUpdater : public LinearUpdater {
monitor.Start("UpdateGpair");
// Update gpair
dh::ExecuteIndexShards(&shards, [&](int idx, std::unique_ptr<DeviceShard>& shard) {
shard->UpdateGpair(in_gpair->ConstHostVector(), model->param);
if (!shard->IsEmpty()) {
shard->UpdateGpair(in_gpair->ConstHostVector(), model->param);
}
});
monitor.Stop("UpdateGpair");
@ -225,8 +236,13 @@ class GPUCoordinateUpdater : public LinearUpdater {
// Get gradient
auto grad = dh::ReduceShards<GradientPair>(
&shards, [&](std::unique_ptr<DeviceShard> &shard) {
return shard->GetBiasGradient(group_idx,
model->param.num_output_group);
if (!shard->IsEmpty()) {
GradientPair result =
shard->GetBiasGradient(group_idx,
model->param.num_output_group);
return result;
}
return GradientPair(0, 0);
});
auto dbias = static_cast<float>(
@ -236,8 +252,10 @@ class GPUCoordinateUpdater : public LinearUpdater {
// Update residual
dh::ExecuteIndexShards(&shards, [&](int idx, std::unique_ptr<DeviceShard>& shard) {
shard->UpdateBiasResidual(dbias, group_idx,
model->param.num_output_group);
if (!shard->IsEmpty()) {
shard->UpdateBiasResidual(dbias, group_idx,
model->param.num_output_group);
}
});
}
}
@ -249,8 +267,11 @@ class GPUCoordinateUpdater : public LinearUpdater {
// Get gradient
auto grad = dh::ReduceShards<GradientPair>(
&shards, [&](std::unique_ptr<DeviceShard> &shard) {
return shard->GetGradient(group_idx, model->param.num_output_group,
fidx);
if (!shard->IsEmpty()) {
return shard->GetGradient(group_idx, model->param.num_output_group,
fidx);
}
return GradientPair(0, 0);
});
auto dw = static_cast<float>(tparam_.learning_rate *
@ -259,8 +280,11 @@ class GPUCoordinateUpdater : public LinearUpdater {
tparam_.reg_lambda_denorm));
w += dw;
dh::ExecuteIndexShards(&shards, [&](int idx, std::unique_ptr<DeviceShard>& shard) {
shard->UpdateResidual(dw, group_idx, model->param.num_output_group, fidx);
dh::ExecuteIndexShards(&shards, [&](int idx,
std::unique_ptr<DeviceShard> &shard) {
if (!shard->IsEmpty()) {
shard->UpdateResidual(dw, group_idx, model->param.num_output_group, fidx);
}
});
}

View File

@ -1,4 +1,6 @@
// Copyright by Contributors
/*!
* Copyright 2018 by Contributors
*/
#include <xgboost/linear_updater.h>
#include "../helpers.h"
#include "xgboost/gbm.h"