Tests for dask skl categorical data support. (#7054)
This commit is contained in:
parent
da1ad798ca
commit
1d4d345634
@ -632,6 +632,12 @@ class XGBModel(XGBModelBase):
|
|||||||
eval_metric = None
|
eval_metric = None
|
||||||
else:
|
else:
|
||||||
params.update({"eval_metric": eval_metric})
|
params.update({"eval_metric": eval_metric})
|
||||||
|
if self.enable_categorical and params.get("tree_method", None) != "gpu_hist":
|
||||||
|
raise ValueError(
|
||||||
|
"Experimental support for categorical data is not implemented for"
|
||||||
|
" current tree method yet."
|
||||||
|
)
|
||||||
|
|
||||||
return model, feval, params
|
return model, feval, params
|
||||||
|
|
||||||
def _set_evaluation_result(self, evals_result: TrainingCallback.EvalsLog) -> None:
|
def _set_evaluation_result(self, evals_result: TrainingCallback.EvalsLog) -> None:
|
||||||
|
|||||||
@ -211,7 +211,7 @@ def test_categorical(local_cuda_cluster: LocalCUDACluster) -> None:
|
|||||||
)
|
)
|
||||||
assert tm.non_increasing(by_builtin_results["Train"]["rmse"])
|
assert tm.non_increasing(by_builtin_results["Train"]["rmse"])
|
||||||
|
|
||||||
model = output["booster"]
|
def check_model_output(model: dxgb.Booster) -> None:
|
||||||
with tempfile.TemporaryDirectory() as tempdir:
|
with tempfile.TemporaryDirectory() as tempdir:
|
||||||
path = os.path.join(tempdir, "model.json")
|
path = os.path.join(tempdir, "model.json")
|
||||||
model.save_model(path)
|
model.save_model(path)
|
||||||
@ -226,6 +226,20 @@ def test_categorical(local_cuda_cluster: LocalCUDACluster) -> None:
|
|||||||
assert categories_sizes.shape[0] != 0
|
assert categories_sizes.shape[0] != 0
|
||||||
np.testing.assert_allclose(categories_sizes, 1)
|
np.testing.assert_allclose(categories_sizes, 1)
|
||||||
|
|
||||||
|
check_model_output(output["booster"])
|
||||||
|
reg = dxgb.DaskXGBRegressor(
|
||||||
|
enable_categorical=True, n_estimators=10, tree_method="gpu_hist"
|
||||||
|
)
|
||||||
|
reg.fit(X, y)
|
||||||
|
|
||||||
|
check_model_output(reg.get_booster())
|
||||||
|
|
||||||
|
reg = dxgb.DaskXGBRegressor(
|
||||||
|
enable_categorical=True, n_estimators=10
|
||||||
|
)
|
||||||
|
with pytest.raises(ValueError):
|
||||||
|
reg.fit(X, y)
|
||||||
|
|
||||||
|
|
||||||
def to_cp(x: Any, DMatrixT: Type) -> Any:
|
def to_cp(x: Any, DMatrixT: Type) -> Any:
|
||||||
import cupy
|
import cupy
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user