Remove dead code in colmaker. (#5105)
This commit is contained in:
parent
b1789b0346
commit
1cb6bcc382
@ -464,11 +464,10 @@ class LearnerImpl : public Learner {
|
||||
|
||||
void UpdateOneIter(int iter, DMatrix* train) override {
|
||||
monitor_.Start("UpdateOneIter");
|
||||
|
||||
this->Configure();
|
||||
if (generic_param_.seed_per_iteration || rabit::IsDistributed()) {
|
||||
common::GlobalRandom().seed(generic_param_.seed * kRandSeedMagic + iter);
|
||||
}
|
||||
this->Configure();
|
||||
this->CheckDataSplitMode();
|
||||
this->ValidateDMatrix(train);
|
||||
|
||||
@ -485,10 +484,10 @@ class LearnerImpl : public Learner {
|
||||
void BoostOneIter(int iter, DMatrix* train,
|
||||
HostDeviceVector<GradientPair>* in_gpair) override {
|
||||
monitor_.Start("BoostOneIter");
|
||||
this->Configure();
|
||||
if (generic_param_.seed_per_iteration || rabit::IsDistributed()) {
|
||||
common::GlobalRandom().seed(generic_param_.seed * kRandSeedMagic + iter);
|
||||
}
|
||||
this->Configure();
|
||||
this->CheckDataSplitMode();
|
||||
this->ValidateDMatrix(train);
|
||||
|
||||
|
||||
@ -5,13 +5,13 @@
|
||||
* \author Tianqi Chen
|
||||
*/
|
||||
#include <rabit/rabit.h>
|
||||
#include <xgboost/tree_updater.h>
|
||||
#include <xgboost/logging.h>
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
#include <cmath>
|
||||
#include <algorithm>
|
||||
|
||||
#include "xgboost/tree_updater.h"
|
||||
#include "xgboost/logging.h"
|
||||
#include "xgboost/json.h"
|
||||
#include "param.h"
|
||||
#include "constraints.h"
|
||||
@ -78,16 +78,12 @@ class ColMaker: public TreeUpdater {
|
||||
struct ThreadEntry {
|
||||
/*! \brief statistics of data */
|
||||
GradStats stats;
|
||||
/*! \brief extra statistics of data */
|
||||
GradStats stats_extra;
|
||||
/*! \brief last feature value scanned */
|
||||
bst_float last_fvalue;
|
||||
/*! \brief first feature value scanned */
|
||||
bst_float first_fvalue;
|
||||
/*! \brief current best solution */
|
||||
SplitEntry best;
|
||||
// constructor
|
||||
ThreadEntry() : last_fvalue{0}, first_fvalue{0} {}
|
||||
ThreadEntry() : last_fvalue{0} {}
|
||||
};
|
||||
struct NodeEntry {
|
||||
/*! \brief statics for node entry */
|
||||
@ -251,152 +247,7 @@ class ColMaker: public TreeUpdater {
|
||||
}
|
||||
}
|
||||
}
|
||||
// parallel find the best split of current fid
|
||||
// this function does not support nested functions
|
||||
inline void ParallelFindSplit(const SparsePage::Inst &col,
|
||||
bst_uint fid,
|
||||
DMatrix *p_fmat,
|
||||
const std::vector<GradientPair> &gpair) {
|
||||
// TODO(tqchen): double check stats order.
|
||||
const bool ind = col.size() != 0 && col[0].fvalue == col[col.size() - 1].fvalue;
|
||||
auto col_density = p_fmat->GetColDensity(fid);
|
||||
bool need_forward = param_.NeedForwardSearch(col_density, ind);
|
||||
bool need_backward = param_.NeedBackwardSearch(col_density, ind);
|
||||
const std::vector<int> &qexpand = qexpand_;
|
||||
#pragma omp parallel
|
||||
{
|
||||
const int tid = omp_get_thread_num();
|
||||
std::vector<ThreadEntry> &temp = stemp_[tid];
|
||||
// cleanup temp statistics
|
||||
for (int j : qexpand) {
|
||||
temp[j].stats = GradStats();
|
||||
}
|
||||
bst_uint step = (col.size() + this->nthread_ - 1) / this->nthread_;
|
||||
bst_uint end = std::min(static_cast<bst_uint>(col.size()), step * (tid + 1));
|
||||
for (bst_uint i = tid * step; i < end; ++i) {
|
||||
const bst_uint ridx = col[i].index;
|
||||
const int nid = position_[ridx];
|
||||
if (nid < 0) continue;
|
||||
const bst_float fvalue = col[i].fvalue;
|
||||
if (temp[nid].stats.Empty()) {
|
||||
temp[nid].first_fvalue = fvalue;
|
||||
}
|
||||
temp[nid].stats.Add(gpair[ridx]);
|
||||
temp[nid].last_fvalue = fvalue;
|
||||
}
|
||||
}
|
||||
// start collecting the partial sum statistics
|
||||
auto nnode = static_cast<bst_omp_uint>(qexpand.size());
|
||||
#pragma omp parallel for schedule(static)
|
||||
for (bst_omp_uint j = 0; j < nnode; ++j) {
|
||||
const int nid = qexpand[j];
|
||||
GradStats sum, tmp, c;
|
||||
for (int tid = 0; tid < this->nthread_; ++tid) {
|
||||
tmp = stemp_[tid][nid].stats;
|
||||
stemp_[tid][nid].stats = sum;
|
||||
sum.Add(tmp);
|
||||
if (tid != 0) {
|
||||
std::swap(stemp_[tid - 1][nid].last_fvalue, stemp_[tid][nid].first_fvalue);
|
||||
}
|
||||
}
|
||||
for (int tid = 0; tid < this->nthread_; ++tid) {
|
||||
stemp_[tid][nid].stats_extra = sum;
|
||||
ThreadEntry &e = stemp_[tid][nid];
|
||||
bst_float fsplit;
|
||||
if (tid != 0) {
|
||||
if (stemp_[tid - 1][nid].last_fvalue != e.first_fvalue) {
|
||||
fsplit = (stemp_[tid - 1][nid].last_fvalue + e.first_fvalue) * 0.5f;
|
||||
} else {
|
||||
continue;
|
||||
}
|
||||
} else {
|
||||
fsplit = e.first_fvalue - kRtEps;
|
||||
}
|
||||
if (need_forward && tid != 0) {
|
||||
c.SetSubstract(snode_[nid].stats, e.stats);
|
||||
if (c.sum_hess >= param_.min_child_weight &&
|
||||
e.stats.sum_hess >= param_.min_child_weight) {
|
||||
auto loss_chg = static_cast<bst_float>(
|
||||
spliteval_->ComputeSplitScore(nid, fid, e.stats, c) -
|
||||
snode_[nid].root_gain);
|
||||
e.best.Update(loss_chg, fid, fsplit, false, e.stats, c);
|
||||
}
|
||||
}
|
||||
if (need_backward) {
|
||||
tmp.SetSubstract(sum, e.stats);
|
||||
c.SetSubstract(snode_[nid].stats, tmp);
|
||||
if (c.sum_hess >= param_.min_child_weight &&
|
||||
tmp.sum_hess >= param_.min_child_weight) {
|
||||
auto loss_chg = static_cast<bst_float>(
|
||||
spliteval_->ComputeSplitScore(nid, fid, tmp, c) -
|
||||
snode_[nid].root_gain);
|
||||
e.best.Update(loss_chg, fid, fsplit, true, tmp, c);
|
||||
}
|
||||
}
|
||||
}
|
||||
if (need_backward) {
|
||||
tmp = sum;
|
||||
ThreadEntry &e = stemp_[this->nthread_-1][nid];
|
||||
c.SetSubstract(snode_[nid].stats, tmp);
|
||||
if (c.sum_hess >= param_.min_child_weight &&
|
||||
tmp.sum_hess >= param_.min_child_weight) {
|
||||
auto loss_chg = static_cast<bst_float>(
|
||||
spliteval_->ComputeSplitScore(nid, fid, tmp, c) -
|
||||
snode_[nid].root_gain);
|
||||
e.best.Update(loss_chg, fid, e.last_fvalue + kRtEps, true, tmp, c);
|
||||
}
|
||||
}
|
||||
}
|
||||
// rescan, generate candidate split
|
||||
#pragma omp parallel
|
||||
{
|
||||
GradStats c, cright;
|
||||
const int tid = omp_get_thread_num();
|
||||
std::vector<ThreadEntry> &temp = stemp_[tid];
|
||||
bst_uint step = (col.size() + this->nthread_ - 1) / this->nthread_;
|
||||
bst_uint end = std::min(static_cast<bst_uint>(col.size()), step * (tid + 1));
|
||||
for (bst_uint i = tid * step; i < end; ++i) {
|
||||
const bst_uint ridx = col[i].index;
|
||||
const int nid = position_[ridx];
|
||||
if (nid < 0) continue;
|
||||
const bst_float fvalue = col[i].fvalue;
|
||||
// get the statistics of nid
|
||||
ThreadEntry &e = temp[nid];
|
||||
if (e.stats.Empty()) {
|
||||
e.stats.Add(gpair[ridx]);
|
||||
e.first_fvalue = fvalue;
|
||||
} else {
|
||||
// forward default right
|
||||
if (fvalue != e.first_fvalue) {
|
||||
if (need_forward) {
|
||||
c.SetSubstract(snode_[nid].stats, e.stats);
|
||||
if (c.sum_hess >= param_.min_child_weight &&
|
||||
e.stats.sum_hess >= param_.min_child_weight) {
|
||||
auto loss_chg = static_cast<bst_float>(
|
||||
spliteval_->ComputeSplitScore(nid, fid, e.stats, c) -
|
||||
snode_[nid].root_gain);
|
||||
e.best.Update(loss_chg, fid, (fvalue + e.first_fvalue) * 0.5f,
|
||||
false, e.stats, c);
|
||||
}
|
||||
}
|
||||
if (need_backward) {
|
||||
cright.SetSubstract(e.stats_extra, e.stats);
|
||||
c.SetSubstract(snode_[nid].stats, cright);
|
||||
if (c.sum_hess >= param_.min_child_weight &&
|
||||
cright.sum_hess >= param_.min_child_weight) {
|
||||
auto loss_chg = static_cast<bst_float>(
|
||||
spliteval_->ComputeSplitScore(nid, fid, c, cright) -
|
||||
snode_[nid].root_gain);
|
||||
e.best.Update(loss_chg, fid, (fvalue + e.first_fvalue) * 0.5f, true, c, cright);
|
||||
}
|
||||
}
|
||||
}
|
||||
e.stats.Add(gpair[ridx]);
|
||||
e.first_fvalue = fvalue;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// update enumeration solution
|
||||
inline void UpdateEnumeration(int nid, GradientPair gstats,
|
||||
bst_float fvalue, int d_step, bst_uint fid,
|
||||
@ -421,10 +272,10 @@ class ColMaker: public TreeUpdater {
|
||||
bst_float proposed_split = (fvalue + e.last_fvalue) * 0.5f;
|
||||
if ( proposed_split == fvalue ) {
|
||||
e.best.Update(loss_chg, fid, e.last_fvalue,
|
||||
d_step == -1, c, e.stats);
|
||||
d_step == -1, c, e.stats);
|
||||
} else {
|
||||
e.best.Update(loss_chg, fid, proposed_split,
|
||||
d_step == -1, c, e.stats);
|
||||
d_step == -1, c, e.stats);
|
||||
}
|
||||
} else {
|
||||
loss_chg = static_cast<bst_float>(
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user