Remove use of device_idx in dh::LaunchN. (#7063)

It's an unused parameter, removing it can make the CI log more readable.
This commit is contained in:
Jiaming Yuan 2021-06-29 11:37:26 +08:00 committed by GitHub
parent dd4db347f3
commit 1c8fdf2218
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
25 changed files with 105 additions and 107 deletions

View File

@ -279,7 +279,7 @@ class LaunchKernel {
};
template <int ITEMS_PER_THREAD = 8, int BLOCK_THREADS = 256, typename L>
inline void LaunchN(int device_idx, size_t n, cudaStream_t stream, L lambda) {
inline void LaunchN(size_t n, cudaStream_t stream, L lambda) {
if (n == 0) {
return;
}
@ -291,13 +291,13 @@ inline void LaunchN(int device_idx, size_t n, cudaStream_t stream, L lambda) {
// Default stream version
template <int ITEMS_PER_THREAD = 8, int BLOCK_THREADS = 256, typename L>
inline void LaunchN(int device_idx, size_t n, L lambda) {
LaunchN<ITEMS_PER_THREAD, BLOCK_THREADS>(device_idx, n, nullptr, lambda);
inline void LaunchN(size_t n, L lambda) {
LaunchN<ITEMS_PER_THREAD, BLOCK_THREADS>(n, nullptr, lambda);
}
template <typename Container>
void Iota(Container array, int32_t device = CurrentDevice()) {
LaunchN(device, array.size(), [=] __device__(size_t i) { array[i] = i; });
void Iota(Container array) {
LaunchN(array.size(), [=] __device__(size_t i) { array[i] = i; });
}
namespace detail {
@ -539,7 +539,7 @@ class TemporaryArray {
int device = 0;
dh::safe_cuda(cudaGetDevice(&device));
auto d_data = ptr_.get();
LaunchN(device, this->size(), [=] __device__(size_t idx) { d_data[idx] = val; });
LaunchN(this->size(), [=] __device__(size_t idx) { d_data[idx] = val; });
}
thrust::device_ptr<T> data() { return ptr_; } // NOLINT
size_t size() { return size_; } // NOLINT

View File

@ -159,7 +159,7 @@ void RemoveDuplicatedCategories(
auto d_new_cuts_size = dh::ToSpan(new_cuts_size);
auto d_new_columns_ptr = dh::ToSpan(new_column_scan);
CHECK_EQ(new_column_scan.size(), new_cuts_size.size());
dh::LaunchN(device, new_column_scan.size(), [=] __device__(size_t idx) {
dh::LaunchN(new_column_scan.size(), [=] __device__(size_t idx) {
d_old_column_sizes_scan[idx] = d_new_columns_ptr[idx];
if (idx == d_new_columns_ptr.size() - 1) {
return;
@ -248,14 +248,14 @@ void ProcessWeightedBatch(int device, const SparsePage& page,
<< "Must have at least 1 group for ranking.";
CHECK_EQ(weights.size(), d_group_ptr.size() - 1)
<< "Weight size should equal to number of groups.";
dh::LaunchN(device, temp_weights.size(), [=] __device__(size_t idx) {
dh::LaunchN(temp_weights.size(), [=] __device__(size_t idx) {
size_t element_idx = idx + begin;
size_t ridx = dh::SegmentId(row_ptrs, element_idx);
bst_group_t group_idx = dh::SegmentId(d_group_ptr, ridx + base_rowid);
d_temp_weights[idx] = weights[group_idx];
});
} else {
dh::LaunchN(device, temp_weights.size(), [=] __device__(size_t idx) {
dh::LaunchN(temp_weights.size(), [=] __device__(size_t idx) {
size_t element_idx = idx + begin;
size_t ridx = dh::SegmentId(row_ptrs, element_idx);
d_temp_weights[idx] = weights[ridx + base_rowid];

View File

@ -41,7 +41,7 @@ void GetColumnSizesScan(int device, size_t num_columns, size_t num_cuts_per_feat
dh::XGBCachingDeviceAllocator<char> alloc;
auto d_column_sizes_scan = column_sizes_scan->data().get();
dh::LaunchN(device, end - begin, [=] __device__(size_t idx) {
dh::LaunchN(end - begin, [=] __device__(size_t idx) {
auto e = batch_iter[begin + idx];
if (is_valid(e)) {
atomicAdd(&d_column_sizes_scan[e.column_idx], static_cast<size_t>(1));

View File

@ -93,9 +93,8 @@ class HostDeviceVectorImpl {
gpu_access_ = GPUAccess::kWrite;
SetDevice();
auto s_data = dh::ToSpan(*data_d_);
dh::LaunchN(device_, data_d_->size(), [=]XGBOOST_DEVICE(size_t i) {
s_data[i] = v;
});
dh::LaunchN(data_d_->size(),
[=] XGBOOST_DEVICE(size_t i) { s_data[i] = v; });
}
}

View File

@ -61,7 +61,7 @@ void PruneImpl(int device,
Span<FeatureType const> feature_types,
Span<SketchEntry> out_cuts,
ToSketchEntry to_sketch_entry) {
dh::LaunchN(device, out_cuts.size(), [=] __device__(size_t idx) {
dh::LaunchN(out_cuts.size(), [=] __device__(size_t idx) {
size_t column_id = dh::SegmentId(cuts_ptr, idx);
auto out_column = out_cuts.subspan(
cuts_ptr[column_id], cuts_ptr[column_id + 1] - cuts_ptr[column_id]);
@ -221,7 +221,7 @@ void MergeImpl(int32_t device, Span<SketchEntry const> const &d_x,
auto d_merge_path = MergePath(d_x, x_ptr, d_y, y_ptr, out, out_ptr);
auto d_out = out;
dh::LaunchN(device, d_out.size(), [=] __device__(size_t idx) {
dh::LaunchN(d_out.size(), [=] __device__(size_t idx) {
auto column_id = dh::SegmentId(out_ptr, idx);
idx -= out_ptr[column_id];
@ -487,7 +487,7 @@ void SketchContainer::FixError() {
dh::safe_cuda(cudaSetDevice(device_));
auto d_columns_ptr = this->columns_ptr_.ConstDeviceSpan();
auto in = dh::ToSpan(this->Current());
dh::LaunchN(device_, in.size(), [=] __device__(size_t idx) {
dh::LaunchN(in.size(), [=] __device__(size_t idx) {
auto column_id = dh::SegmentId(d_columns_ptr, idx);
auto in_column = in.subspan(d_columns_ptr[column_id],
d_columns_ptr[column_id + 1] -
@ -627,7 +627,7 @@ void SketchContainer::MakeCuts(HistogramCuts* p_cuts) {
auto out_cut_values = p_cuts->cut_values_.DeviceSpan();
auto d_ft = feature_types_.ConstDeviceSpan();
dh::LaunchN(0, total_bins, [=] __device__(size_t idx) {
dh::LaunchN(total_bins, [=] __device__(size_t idx) {
auto column_id = dh::SegmentId(d_out_columns_ptr, idx);
auto in_column = in_cut_values.subspan(d_in_columns_ptr[column_id],
d_in_columns_ptr[column_id + 1] -

View File

@ -44,7 +44,7 @@ SegmentedTrapezoidThreads(xgboost::common::Span<U> group_ptr,
CHECK_GE(group_ptr.size(), 1);
CHECK_EQ(group_ptr.size(), out_group_threads_ptr.size());
dh::LaunchN(
dh::CurrentDevice(), group_ptr.size(), [=] XGBOOST_DEVICE(size_t idx) {
group_ptr.size(), [=] XGBOOST_DEVICE(size_t idx) {
if (idx == 0) {
out_group_threads_ptr[0] = 0;
return;

View File

@ -29,7 +29,7 @@ void CopyInfoImpl(ArrayInterface column, HostDeviceVector<float>* out) {
auto p_dst = thrust::device_pointer_cast(out->DevicePointer());
dh::LaunchN(ptr_device, column.num_rows, [=] __device__(size_t idx) {
dh::LaunchN(column.num_rows, [=] __device__(size_t idx) {
p_dst[idx] = column.GetElement(idx, 0);
});
}
@ -49,10 +49,11 @@ void CopyGroupInfoImpl(ArrayInterface column, std::vector<bst_group_t>* out) {
<< "Expected integer for group info.";
auto ptr_device = SetDeviceToPtr(column.data);
CHECK_EQ(ptr_device, dh::CurrentDevice());
dh::TemporaryArray<bst_group_t> temp(column.num_rows);
auto d_tmp = temp.data();
dh::LaunchN(ptr_device, column.num_rows, [=] __device__(size_t idx) {
dh::LaunchN(column.num_rows, [=] __device__(size_t idx) {
d_tmp[idx] = column.GetElement<size_t>(idx, 0);
});
auto length = column.num_rows;
@ -73,8 +74,8 @@ void CopyQidImpl(ArrayInterface array_interface,
dh::caching_device_vector<bool> flag(1);
auto d_flag = dh::ToSpan(flag);
auto d = SetDeviceToPtr(array_interface.data);
dh::LaunchN(d, 1, [=] __device__(size_t) { d_flag[0] = true; });
dh::LaunchN(d, array_interface.num_rows - 1, [=] __device__(size_t i) {
dh::LaunchN(1, [=] __device__(size_t) { d_flag[0] = true; });
dh::LaunchN(array_interface.num_rows - 1, [=] __device__(size_t i) {
if (array_interface.GetElement<uint32_t>(i, 0) >
array_interface.GetElement<uint32_t>(i + 1, 0)) {
d_flag[0] = false;

View File

@ -216,7 +216,7 @@ size_t GetRowCounts(const AdapterBatchT batch, common::Span<size_t> offset,
int device_idx, float missing) {
IsValidFunctor is_valid(missing);
// Count elements per row
dh::LaunchN(device_idx, batch.Size(), [=] __device__(size_t idx) {
dh::LaunchN(batch.Size(), [=] __device__(size_t idx) {
auto element = batch.GetElement(idx);
if (is_valid(element)) {
atomicAdd(reinterpret_cast<unsigned long long*>( // NOLINT

View File

@ -257,16 +257,16 @@ void WriteNullValues(EllpackPageImpl* dst, int device_idx,
common::CompressedBufferWriter writer(device_accessor.NumSymbols());
auto d_compressed_buffer = dst->gidx_buffer.DevicePointer();
auto row_stride = dst->row_stride;
dh::LaunchN(device_idx, row_stride * dst->n_rows, [=] __device__(size_t idx) {
auto writer_non_const =
writer; // For some reason this variable gets captured as const
size_t row_idx = idx / row_stride;
size_t row_offset = idx % row_stride;
if (row_offset >= row_counts[row_idx]) {
writer_non_const.AtomicWriteSymbol(d_compressed_buffer,
device_accessor.NullValue(), idx);
}
});
dh::LaunchN(row_stride * dst->n_rows, [=] __device__(size_t idx) {
// For some reason this variable got captured as const
auto writer_non_const = writer;
size_t row_idx = idx / row_stride;
size_t row_offset = idx % row_stride;
if (row_offset >= row_counts[row_idx]) {
writer_non_const.AtomicWriteSymbol(d_compressed_buffer,
device_accessor.NullValue(), idx);
}
});
}
template <typename AdapterBatch>
@ -326,7 +326,7 @@ size_t EllpackPageImpl::Copy(int device, EllpackPageImpl* page, size_t offset) {
}
gidx_buffer.SetDevice(device);
page->gidx_buffer.SetDevice(device);
dh::LaunchN(device, num_elements, CopyPage(this, page, offset));
dh::LaunchN(num_elements, CopyPage(this, page, offset));
monitor_.Stop("Copy");
return num_elements;
}
@ -382,7 +382,7 @@ void EllpackPageImpl::Compact(int device, EllpackPageImpl* page,
CHECK_LE(page->base_rowid + page->n_rows, row_indexes.size());
gidx_buffer.SetDevice(device);
page->gidx_buffer.SetDevice(device);
dh::LaunchN(device, page->n_rows, CompactPage(this, page, row_indexes));
dh::LaunchN(page->n_rows, CompactPage(this, page, row_indexes));
monitor_.Stop("Compact");
}

View File

@ -19,7 +19,7 @@ void CountRowOffsets(const AdapterBatchT& batch, common::Span<bst_row_t> offset,
int device_idx, float missing) {
IsValidFunctor is_valid(missing);
// Count elements per row
dh::LaunchN(device_idx, batch.Size(), [=] __device__(size_t idx) {
dh::LaunchN(batch.Size(), [=] __device__(size_t idx) {
auto element = batch.GetElement(idx);
if (is_valid(element)) {
atomicAdd(reinterpret_cast<unsigned long long*>( // NOLINT

View File

@ -20,14 +20,13 @@ void GPUCopyGradient(HostDeviceVector<GradientPair> const *in_gpair,
auto v_in = VectorView<GradientPair const>{in, group_id};
out_gpair->Resize(v_in.Size());
auto d_out = out_gpair->DeviceSpan();
dh::LaunchN(dh::CurrentDevice(), v_in.Size(),
[=] __device__(size_t i) { d_out[i] = v_in[i]; });
dh::LaunchN(v_in.Size(), [=] __device__(size_t i) { d_out[i] = v_in[i]; });
}
void GPUDartPredictInc(common::Span<float> out_predts,
common::Span<float> predts, float tree_w, size_t n_rows,
bst_group_t n_groups, bst_group_t group) {
dh::LaunchN(dh::CurrentDevice(), n_rows, [=]XGBOOST_DEVICE(size_t ridx) {
dh::LaunchN(n_rows, [=] XGBOOST_DEVICE(size_t ridx) {
const size_t offset = ridx * n_groups + group;
out_predts[offset] += (predts[offset] * tree_w);
});
@ -37,7 +36,7 @@ void GPUDartInplacePredictInc(common::Span<float> out_predts,
common::Span<float> predts, float tree_w,
size_t n_rows, float base_score,
bst_group_t n_groups, bst_group_t group) {
dh::LaunchN(dh::CurrentDevice(), n_rows, [=] XGBOOST_DEVICE(size_t ridx) {
dh::LaunchN(n_rows, [=] XGBOOST_DEVICE(size_t ridx) {
const size_t offset = ridx * n_groups + group;
out_predts[offset] += (predts[offset] - base_score) * tree_w;
});

View File

@ -193,7 +193,7 @@ class GPUCoordinateUpdater : public LinearUpdater { // NOLINT
void UpdateBiasResidual(float dbias, int group_idx, int num_groups) {
if (dbias == 0.0f) return;
auto d_gpair = dh::ToSpan(gpair_);
dh::LaunchN(learner_param_->gpu_id, num_row_, [=] __device__(size_t idx) {
dh::LaunchN(num_row_, [=] __device__(size_t idx) {
auto &g = d_gpair[idx * num_groups + group_idx];
g += GradientPair(g.GetHess() * dbias, 0);
});
@ -222,7 +222,7 @@ class GPUCoordinateUpdater : public LinearUpdater { // NOLINT
common::Span<GradientPair> d_gpair = dh::ToSpan(gpair_);
common::Span<Entry> d_col = dh::ToSpan(data_).subspan(row_ptr_[fidx]);
size_t col_size = row_ptr_[fidx + 1] - row_ptr_[fidx];
dh::LaunchN(learner_param_->gpu_id, col_size, [=] __device__(size_t idx) {
dh::LaunchN(col_size, [=] __device__(size_t idx) {
auto entry = d_col[idx];
auto &g = d_gpair[entry.index * num_groups + group_idx];
g += GradientPair(g.GetHess() * dw * entry.fvalue, 0);

View File

@ -118,12 +118,12 @@ GPUBinaryAUC(common::Span<float const> predts, MetaInfo const &info,
return thrust::make_pair(fp, tp);
}; // NOLINT
auto d_fptp = dh::ToSpan(cache->fptp);
dh::LaunchN(device, d_sorted_idx.size(),
dh::LaunchN(d_sorted_idx.size(),
[=] __device__(size_t i) { d_fptp[i] = get_fp_tp(i); });
dh::XGBDeviceAllocator<char> alloc;
auto d_unique_idx = dh::ToSpan(cache->unique_idx);
dh::Iota(d_unique_idx, device);
dh::Iota(d_unique_idx);
auto uni_key = dh::MakeTransformIterator<float>(
thrust::make_counting_iterator(0),
@ -144,7 +144,7 @@ GPUBinaryAUC(common::Span<float const> predts, MetaInfo const &info,
auto d_neg_pos = dh::ToSpan(cache->neg_pos);
// scatter unique negaive/positive values
// shift to right by 1 with initial value being 0
dh::LaunchN(device, d_unique_idx.size(), [=] __device__(size_t i) {
dh::LaunchN(d_unique_idx.size(), [=] __device__(size_t i) {
if (d_unique_idx[i] == 0) { // first unique index is 0
assert(i == 0);
d_neg_pos[0] = {0, 0};
@ -183,7 +183,7 @@ void Transpose(common::Span<float const> in, common::Span<float> out, size_t m,
size_t n, int32_t device) {
CHECK_EQ(in.size(), out.size());
CHECK_EQ(in.size(), m * n);
dh::LaunchN(device, in.size(), [=] __device__(size_t i) {
dh::LaunchN(in.size(), [=] __device__(size_t i) {
size_t col = i / m;
size_t row = i % m;
size_t idx = row * n + col;
@ -255,9 +255,8 @@ float GPUMultiClassAUCOVR(common::Span<float const> predts, MetaInfo const &info
if (n_samples == 0) {
dh::TemporaryArray<float> resutls(n_classes * 4, 0.0f);
auto d_results = dh::ToSpan(resutls);
dh::LaunchN(device, n_classes * 4, [=]__device__(size_t i) {
d_results[i] = 0.0f;
});
dh::LaunchN(n_classes * 4,
[=] __device__(size_t i) { d_results[i] = 0.0f; });
auto local_area = d_results.subspan(0, n_classes);
auto fp = d_results.subspan(n_classes, n_classes);
auto tp = d_results.subspan(2 * n_classes, n_classes);
@ -273,9 +272,8 @@ float GPUMultiClassAUCOVR(common::Span<float const> predts, MetaInfo const &info
dh::TemporaryArray<uint32_t> class_ptr(n_classes + 1, 0);
auto d_class_ptr = dh::ToSpan(class_ptr);
dh::LaunchN(device, n_classes + 1, [=]__device__(size_t i) {
d_class_ptr[i] = i * n_samples;
});
dh::LaunchN(n_classes + 1,
[=] __device__(size_t i) { d_class_ptr[i] = i * n_samples; });
// no out-of-place sort for thrust, cub sort doesn't accept general iterator. So can't
// use transform iterator in sorting.
auto d_sorted_idx = dh::ToSpan(cache->sorted_idx);
@ -301,7 +299,7 @@ float GPUMultiClassAUCOVR(common::Span<float const> predts, MetaInfo const &info
float tp = label * w;
return thrust::make_pair(fp, tp);
}; // NOLINT
dh::LaunchN(device, d_sorted_idx.size(),
dh::LaunchN(d_sorted_idx.size(),
[=] __device__(size_t i) { d_fptp[i] = get_fp_tp(i); });
/**
@ -309,7 +307,7 @@ float GPUMultiClassAUCOVR(common::Span<float const> predts, MetaInfo const &info
*/
dh::XGBDeviceAllocator<char> alloc;
auto d_unique_idx = dh::ToSpan(cache->unique_idx);
dh::Iota(d_unique_idx, device);
dh::Iota(d_unique_idx);
auto uni_key = dh::MakeTransformIterator<thrust::pair<uint32_t, float>>(
thrust::make_counting_iterator(0), [=] __device__(size_t i) {
uint32_t class_id = i / n_samples;
@ -363,7 +361,7 @@ float GPUMultiClassAUCOVR(common::Span<float const> predts, MetaInfo const &info
auto d_neg_pos = dh::ToSpan(cache->neg_pos);
// When dataset is not empty, each class must have at least 1 (unique) sample
// prediction, so no need to handle special case.
dh::LaunchN(device, d_unique_idx.size(), [=]__device__(size_t i) {
dh::LaunchN(d_unique_idx.size(), [=] __device__(size_t i) {
if (d_unique_idx[i] % n_samples == 0) { // first unique index is 0
assert(d_unique_idx[i] % n_samples == 0);
d_neg_pos[d_unique_idx[i]] = {0, 0}; // class_id * n_samples = i
@ -419,7 +417,7 @@ float GPUMultiClassAUCOVR(common::Span<float const> predts, MetaInfo const &info
auto tp = d_results.subspan(2 * n_classes, n_classes);
auto auc = d_results.subspan(3 * n_classes, n_classes);
dh::LaunchN(device, n_classes, [=] __device__(size_t c) {
dh::LaunchN(n_classes, [=] __device__(size_t c) {
auc[c] = s_d_auc[c];
auto last = d_fptp[n_samples * c + (n_samples - 1)];
fp[c] = last.first;

View File

@ -107,7 +107,7 @@ struct EvalPrecisionGpu {
int device_id = -1;
dh::safe_cuda(cudaGetDevice(&device_id));
// For each group item compute the aggregated precision
dh::LaunchN(device_id, nitems, nullptr, [=] __device__(uint32_t idx) {
dh::LaunchN(nitems, nullptr, [=] __device__(uint32_t idx) {
const auto group_idx = dgroup_idx[idx];
const auto group_begin = dgroups[group_idx];
const auto ridx = idx - group_begin;
@ -151,7 +151,7 @@ struct EvalNDCGGpu {
dh::safe_cuda(cudaGetDevice(&device_id));
// For each group item compute the aggregated precision
dh::LaunchN(device_id, nitems, nullptr, [=] __device__(uint32_t idx) {
dh::LaunchN(nitems, nullptr, [=] __device__(uint32_t idx) {
const auto group_idx = dgroup_idx[idx];
const auto group_begin = dgroups[group_idx];
const auto ridx = idx - group_begin;
@ -185,7 +185,7 @@ struct EvalNDCGGpu {
int device_id = -1;
dh::safe_cuda(cudaGetDevice(&device_id));
// Compute the group's DCG and reduce it across all groups
dh::LaunchN(device_id, ngroups, nullptr, [=] __device__(uint32_t gidx) {
dh::LaunchN(ngroups, nullptr, [=] __device__(uint32_t gidx) {
if (didcg[gidx] == 0.0f) {
ddcg[gidx] = (ecfg.minus) ? 0.0f : 1.0f;
} else {
@ -244,7 +244,7 @@ struct EvalMAPGpu {
int device_id = -1;
dh::safe_cuda(cudaGetDevice(&device_id));
// For each group item compute the aggregated precision
dh::LaunchN(device_id, nitems, nullptr, [=] __device__(uint32_t idx) {
dh::LaunchN(nitems, nullptr, [=] __device__(uint32_t idx) {
if (DetermineNonTrivialLabelLambda(idx)) {
const auto group_idx = dgroup_idx[idx];
const auto group_begin = dgroups[group_idx];
@ -257,7 +257,7 @@ struct EvalMAPGpu {
});
// Aggregate the group's item precisions
dh::LaunchN(device_id, ngroups, nullptr, [=] __device__(uint32_t gidx) {
dh::LaunchN(ngroups, nullptr, [=] __device__(uint32_t gidx) {
auto nhits = dgroups[gidx + 1] ? dhits[dgroups[gidx + 1] - 1] : 0;
if (nhits != 0) {
dsumap[gidx] /= nhits;
@ -391,7 +391,7 @@ struct EvalAucPRGpu : public Metric {
int device_id = -1;
dh::safe_cuda(cudaGetDevice(&device_id));
// For each group item compute the aggregated precision
dh::LaunchN<1, 32>(device_id, ngroups, nullptr, [=] __device__(uint32_t gidx) {
dh::LaunchN<1, 32>(ngroups, nullptr, [=] __device__(uint32_t gidx) {
// We need pos > 0 && neg > 0
if (dtotal_pos[gidx] <= 0.0 || dtotal_neg[gidx] <= 0.0) {
atomicAdd(dauc_error, 1);

View File

@ -672,7 +672,7 @@ class SortedLabelList : dh::SegmentSorter<float> {
int device_id = -1;
dh::safe_cuda(cudaGetDevice(&device_id));
// For each instance in the group, compute the gradient pair concurrently
dh::LaunchN(device_id, niter, nullptr, [=] __device__(uint32_t idx) {
dh::LaunchN(niter, nullptr, [=] __device__(uint32_t idx) {
// First, determine the group 'idx' belongs to
uint32_t item_idx = idx % total_items;
uint32_t group_idx =

View File

@ -488,6 +488,7 @@ void ExtractPaths(
dh::device_vector<gpu_treeshap::PathElement<ShapSplitCondition>> *paths,
DeviceModel *model, dh::device_vector<uint32_t> *path_categories,
int gpu_id) {
dh::safe_cuda(cudaSetDevice(gpu_id));
auto& device_model = *model;
dh::caching_device_vector<PathInfo> info(device_model.nodes.Size());
@ -558,7 +559,7 @@ void ExtractPaths(
auto d_model_categories = device_model.categories.DeviceSpan();
common::Span<uint32_t> d_path_categories = dh::ToSpan(*path_categories);
dh::LaunchN(gpu_id, info.size(), [=] __device__(size_t idx) {
dh::LaunchN(info.size(), [=] __device__(size_t idx) {
auto path_info = d_info[idx];
size_t tree_offset = d_tree_segments[path_info.tree_idx];
TreeView tree{0, path_info.tree_idx, d_nodes,
@ -856,7 +857,6 @@ class GPUPredictor : public xgboost::Predictor {
const auto margin = p_fmat->Info().base_margin_.ConstDeviceSpan();
float base_score = model.learner_model_param->base_score;
dh::LaunchN(
generic_param_->gpu_id,
p_fmat->Info().num_row_ * model.learner_model_param->num_output_group,
[=] __device__(size_t idx) {
phis[(idx + 1) * contributions_columns - 1] +=
@ -917,7 +917,6 @@ class GPUPredictor : public xgboost::Predictor {
float base_score = model.learner_model_param->base_score;
size_t n_features = model.learner_model_param->num_feature;
dh::LaunchN(
generic_param_->gpu_id,
p_fmat->Info().num_row_ * model.learner_model_param->num_output_group,
[=] __device__(size_t idx) {
size_t group = idx % ngroup;

View File

@ -96,7 +96,7 @@ void RowPartitioner::SortPosition(common::Span<bst_node_t> position,
void Reset(int device_idx, common::Span<RowPartitioner::RowIndexT> ridx,
common::Span<bst_node_t> position) {
CHECK_EQ(ridx.size(), position.size());
dh::LaunchN(device_idx, ridx.size(), [=] __device__(size_t idx) {
dh::LaunchN(ridx.size(), [=] __device__(size_t idx) {
ridx[idx] = idx;
position[idx] = 0;
});
@ -131,7 +131,7 @@ common::Span<const RowPartitioner::RowIndexT> RowPartitioner::GetRows(
// Return empty span here as a valid result
// Will error if we try to construct a span from a pointer with size 0
if (segment.Size() == 0) {
return common::Span<const RowPartitioner::RowIndexT>();
return {};
}
return ridx_.CurrentSpan().subspan(segment.begin, segment.Size());
}
@ -180,7 +180,7 @@ void RowPartitioner::SortPositionAndCopy(const Segment& segment,
const auto d_position_other = position_.Other() + segment.begin;
const auto d_ridx_current = ridx_.Current() + segment.begin;
const auto d_ridx_other = ridx_.Other() + segment.begin;
dh::LaunchN(device_idx_, segment.Size(), stream, [=] __device__(size_t idx) {
dh::LaunchN(segment.Size(), stream, [=] __device__(size_t idx) {
d_position_current[idx] = d_position_other[idx];
d_ridx_current[idx] = d_ridx_other[idx];
});

View File

@ -120,7 +120,7 @@ class RowPartitioner {
int64_t* d_left_count = left_counts_.data().get() + nidx;
// Launch 1 thread for each row
dh::LaunchN<1, 128>(device_idx_, segment.Size(), [=] __device__(size_t idx) {
dh::LaunchN<1, 128>(segment.Size(), [=] __device__(size_t idx) {
// LaunchN starts from zero, so we restore the row index by adding segment.begin
idx += segment.begin;
RowIndexT ridx = d_ridx[idx];
@ -160,7 +160,7 @@ class RowPartitioner {
void FinalisePosition(FinalisePositionOpT op) {
auto d_position = position_.Current();
const auto d_ridx = ridx_.Current();
dh::LaunchN(device_idx_, position_.Size(), [=] __device__(size_t idx) {
dh::LaunchN(position_.Size(), [=] __device__(size_t idx) {
auto position = d_position[idx];
RowIndexT ridx = d_ridx[idx];
bst_node_t new_position = op(ridx, position);

View File

@ -94,8 +94,8 @@ class DeviceHistogram {
void Reset() {
auto d_data = data_.data().get();
dh::LaunchN(device_id_, data_.size(),
[=] __device__(size_t idx) { d_data[idx] = 0.0f; });
dh::LaunchN(data_.size(),
[=] __device__(size_t idx) { d_data[idx] = 0.0f; });
nidx_map_.clear();
}
bool HistogramExists(int nidx) const {
@ -130,7 +130,7 @@ class DeviceHistogram {
}
// Zero recycled memory
auto d_data = data_.data().get() + nidx_map_[nidx];
dh::LaunchN(device_id_, n_bins_ * 2,
dh::LaunchN(n_bins_ * 2,
[=] __device__(size_t idx) { d_data[idx] = 0.0f; });
} else {
// Append new node histogram
@ -367,7 +367,7 @@ struct GPUHistMakerDevice {
dh::TemporaryArray<GPUExpandEntry> entries(2);
auto evaluator = tree_evaluator.GetEvaluator<GPUTrainingParam>();
auto d_entries = entries.data().get();
dh::LaunchN(device_id, 2, [=] __device__(size_t idx) {
dh::LaunchN(2, [=] __device__(size_t idx) {
auto split = d_splits_out[idx];
auto nidx = idx == 0 ? left_nidx : right_nidx;
@ -402,7 +402,7 @@ struct GPUHistMakerDevice {
auto d_node_hist_histogram = hist.GetNodeHistogram(nidx_histogram);
auto d_node_hist_subtraction = hist.GetNodeHistogram(nidx_subtraction);
dh::LaunchN(device_id, page->Cuts().TotalBins(), [=] __device__(size_t idx) {
dh::LaunchN(page->Cuts().TotalBins(), [=] __device__(size_t idx) {
d_node_hist_subtraction[idx] =
d_node_hist_parent[idx] - d_node_hist_histogram[idx];
});
@ -545,7 +545,7 @@ struct GPUHistMakerDevice {
auto d_node_sum_gradients = device_node_sum_gradients.data().get();
auto evaluator = tree_evaluator.GetEvaluator<GPUTrainingParam>();
dh::LaunchN(device_id, d_ridx.size(), [=] __device__(int local_idx) {
dh::LaunchN(d_ridx.size(), [=] __device__(int local_idx) {
int pos = d_position[local_idx];
bst_float weight = evaluator.CalcWeight(
pos, param_d, GradStats{d_node_sum_gradients[pos]});
@ -676,7 +676,7 @@ struct GPUHistMakerDevice {
auto evaluator = tree_evaluator.GetEvaluator<GPUTrainingParam>();
GPUTrainingParam gpu_param(param);
auto depth = p_tree->GetDepth(kRootNIdx);
dh::LaunchN(device_id, 1, [=] __device__(size_t idx) {
dh::LaunchN(1, [=] __device__(size_t idx) {
float left_weight = evaluator.CalcWeight(kRootNIdx, gpu_param,
GradStats{split.left_sum});
float right_weight = evaluator.CalcWeight(

View File

@ -18,8 +18,8 @@ void TestAtomicSizeT() {
size_t constexpr kThreads = 235;
dh::device_vector<size_t> out(1, 0);
auto d_out = dh::ToSpan(out);
dh::LaunchN(0, kThreads, [=]__device__(size_t idx){
atomicAdd(&d_out[0], static_cast<size_t>(1));
dh::LaunchN(kThreads, [=] __device__(size_t idx) {
atomicAdd(&d_out[0], static_cast<size_t>(1));
});
ASSERT_EQ(out[0], kThreads);
}
@ -32,7 +32,7 @@ void TestSegmentID() {
std::vector<size_t> segments{0, 1, 3};
thrust::device_vector<size_t> d_segments(segments);
auto s_segments = dh::ToSpan(d_segments);
dh::LaunchN(0, 1, [=]__device__(size_t idx) {
dh::LaunchN(1, [=]__device__(size_t idx) {
auto id = dh::SegmentId(s_segments, 0);
SPAN_CHECK(id == 0);
id = dh::SegmentId(s_segments, 1);

View File

@ -53,14 +53,14 @@ TEST(CompressedIterator, TestGPU) {
// write the data on device
auto input_data_d = input_d.data().get();
auto buffer_data_d = buffer_d.data().get();
dh::LaunchN(0, input_d.size(),
WriteSymbolFunction(cbw, buffer_data_d, input_data_d));
dh::LaunchN(input_d.size(),
WriteSymbolFunction(cbw, buffer_data_d, input_data_d));
// read the data on device
CompressedIterator<int> ci(buffer_d.data().get(), alphabet_size);
thrust::device_vector<int> output_d(input.size());
auto output_data_d = output_d.data().get();
dh::LaunchN(0, output_d.size(), ReadSymbolFunction(ci, output_data_d));
dh::LaunchN(output_d.size(), ReadSymbolFunction(ci, output_data_d));
std::vector<int> output(output_d.size());
thrust::copy(output_d.begin(), output_d.end(), output.begin());

View File

@ -91,14 +91,14 @@ TEST(GPUSpan, FromOther) {
TEST(GPUSpan, Assignment) {
dh::safe_cuda(cudaSetDevice(0));
TestStatus status;
dh::LaunchN(0, 16, TestAssignment{status.Data()});
dh::LaunchN(16, TestAssignment{status.Data()});
ASSERT_EQ(status.Get(), 1);
}
TEST(GPUSpan, TestStatus) {
dh::safe_cuda(cudaSetDevice(0));
TestStatus status;
dh::LaunchN(0, 16, TestTestStatus{status.Data()});
dh::LaunchN(16, TestTestStatus{status.Data()});
ASSERT_EQ(status.Get(), -1);
}
@ -143,7 +143,7 @@ TEST(GPUSpan, WithTrust) {
thrust::copy(thrust::device, d_vec.begin(), d_vec.end(), d_vec1.begin());
Span<float> s (d_vec1.data().get(), d_vec.size());
dh::LaunchN(0, 16, TestEqual<float>{
dh::LaunchN(16, TestEqual<float>{
thrust::raw_pointer_cast(d_vec1.data()),
s.data(), status.Data()});
ASSERT_EQ(status.Get(), 1);
@ -158,14 +158,14 @@ TEST(GPUSpan, WithTrust) {
TEST(GPUSpan, BeginEnd) {
dh::safe_cuda(cudaSetDevice(0));
TestStatus status;
dh::LaunchN(0, 16, TestBeginEnd{status.Data()});
dh::LaunchN(16, TestBeginEnd{status.Data()});
ASSERT_EQ(status.Get(), 1);
}
TEST(GPUSpan, RBeginREnd) {
dh::safe_cuda(cudaSetDevice(0));
TestStatus status;
dh::LaunchN(0, 16, TestRBeginREnd{status.Data()});
dh::LaunchN(16, TestRBeginREnd{status.Data()});
ASSERT_EQ(status.Get(), 1);
}
@ -197,14 +197,14 @@ TEST(GPUSpan, Modify) {
TEST(GPUSpan, Observers) {
dh::safe_cuda(cudaSetDevice(0));
TestStatus status;
dh::LaunchN(0, 16, TestObservers{status.Data()});
dh::LaunchN(16, TestObservers{status.Data()});
ASSERT_EQ(status.Get(), 1);
}
TEST(GPUSpan, Compare) {
dh::safe_cuda(cudaSetDevice(0));
TestStatus status;
dh::LaunchN(0, 16, TestIterCompare{status.Data()});
dh::LaunchN(16, TestIterCompare{status.Data()});
ASSERT_EQ(status.Get(), 1);
}
@ -231,7 +231,7 @@ TEST(GPUSpanDeathTest, ElementAccess) {
thrust::copy(h_vec.begin(), h_vec.end(), d_vec.begin());
Span<float> span (d_vec.data().get(), d_vec.size());
dh::LaunchN(0, 17, TestElementAccess{span});
dh::LaunchN(17, TestElementAccess{span});
};
testing::internal::CaptureStdout();
@ -387,42 +387,42 @@ TEST(GPUSpan, Subspan) {
TEST(GPUSpanIter, Construct) {
dh::safe_cuda(cudaSetDevice(0));
TestStatus status;
dh::LaunchN(0, 16, TestIterConstruct{status.Data()});
dh::LaunchN(16, TestIterConstruct{status.Data()});
ASSERT_EQ(status.Get(), 1);
}
TEST(GPUSpanIter, Ref) {
dh::safe_cuda(cudaSetDevice(0));
TestStatus status;
dh::LaunchN(0, 16, TestIterRef{status.Data()});
dh::LaunchN(16, TestIterRef{status.Data()});
ASSERT_EQ(status.Get(), 1);
}
TEST(GPUSpanIter, Calculate) {
dh::safe_cuda(cudaSetDevice(0));
TestStatus status;
dh::LaunchN(0, 16, TestIterCalculate{status.Data()});
dh::LaunchN(16, TestIterCalculate{status.Data()});
ASSERT_EQ(status.Get(), 1);
}
TEST(GPUSpanIter, Compare) {
dh::safe_cuda(cudaSetDevice(0));
TestStatus status;
dh::LaunchN(0, 16, TestIterCompare{status.Data()});
dh::LaunchN(16, TestIterCompare{status.Data()});
ASSERT_EQ(status.Get(), 1);
}
TEST(GPUSpan, AsBytes) {
dh::safe_cuda(cudaSetDevice(0));
TestStatus status;
dh::LaunchN(0, 16, TestAsBytes{status.Data()});
dh::LaunchN(16, TestAsBytes{status.Data()});
ASSERT_EQ(status.Get(), 1);
}
TEST(GPUSpan, AsWritableBytes) {
dh::safe_cuda(cudaSetDevice(0));
TestStatus status;
dh::LaunchN(0, 16, TestAsWritableBytes{status.Data()});
dh::LaunchN(16, TestAsWritableBytes{status.Data()});
ASSERT_EQ(status.Get(), 1);
}

View File

@ -33,7 +33,7 @@ void TestCudfAdapter()
EXPECT_EQ(batch.Size(), kRowsA + kRowsB);
EXPECT_NO_THROW({
dh::LaunchN(0, batch.Size(), [=] __device__(size_t idx) {
dh::LaunchN(batch.Size(), [=] __device__(size_t idx) {
auto element = batch.GetElement(idx);
KERNEL_CHECK(element.row_idx == idx / 2);
if (idx % 2 == 0) {

View File

@ -166,10 +166,10 @@ TEST(EllpackPage, Copy) {
EXPECT_EQ(impl->base_rowid, current_row);
for (size_t i = 0; i < impl->Size(); i++) {
dh::LaunchN(0, kCols, ReadRowFunction(impl->GetDeviceAccessor(0), current_row, row_d.data().get()));
dh::LaunchN(kCols, ReadRowFunction(impl->GetDeviceAccessor(0), current_row, row_d.data().get()));
thrust::copy(row_d.begin(), row_d.end(), row.begin());
dh::LaunchN(0, kCols, ReadRowFunction(result.GetDeviceAccessor(0), current_row, row_result_d.data().get()));
dh::LaunchN(kCols, ReadRowFunction(result.GetDeviceAccessor(0), current_row, row_result_d.data().get()));
thrust::copy(row_result_d.begin(), row_result_d.end(), row_result.begin());
EXPECT_EQ(row, row_result);
@ -221,12 +221,14 @@ TEST(EllpackPage, Compact) {
continue;
}
dh::LaunchN(0, kCols, ReadRowFunction(impl->GetDeviceAccessor(0), current_row, row_d.data().get()));
dh::safe_cuda (cudaDeviceSynchronize());
dh::LaunchN(kCols, ReadRowFunction(impl->GetDeviceAccessor(0),
current_row, row_d.data().get()));
dh::safe_cuda(cudaDeviceSynchronize());
thrust::copy(row_d.begin(), row_d.end(), row.begin());
dh::LaunchN(0, kCols,
ReadRowFunction(result.GetDeviceAccessor(0), compacted_row, row_result_d.data().get()));
dh::LaunchN(kCols,
ReadRowFunction(result.GetDeviceAccessor(0), compacted_row,
row_result_d.data().get()));
thrust::copy(row_result_d.begin(), row_result_d.end(), row_result.begin());
EXPECT_EQ(row, row_result);

View File

@ -124,10 +124,10 @@ TEST(SparsePageDMatrix, MultipleEllpackPageContent) {
EXPECT_EQ(impl_ext->base_rowid, current_row);
for (size_t i = 0; i < impl_ext->Size(); i++) {
dh::LaunchN(0, kCols, ReadRowFunction(impl->GetDeviceAccessor(0), current_row, row_d.data().get()));
dh::LaunchN(kCols, ReadRowFunction(impl->GetDeviceAccessor(0), current_row, row_d.data().get()));
thrust::copy(row_d.begin(), row_d.end(), row.begin());
dh::LaunchN(0, kCols, ReadRowFunction(impl_ext->GetDeviceAccessor(0), current_row, row_ext_d.data().get()));
dh::LaunchN(kCols, ReadRowFunction(impl_ext->GetDeviceAccessor(0), current_row, row_ext_d.data().get()));
thrust::copy(row_ext_d.begin(), row_ext_d.end(), row_ext.begin());
EXPECT_EQ(row, row_ext);