fix additional files note (#4699)

* fix additional files note

* Trigger CI

* Trigger CI
This commit is contained in:
Tong He 2019-07-25 00:37:38 -07:00 committed by Philip Cho
parent 9c02016844
commit 1995db85e8
No known key found for this signature in database
GPG Key ID: A758FA046E1F6BB8
18 changed files with 34 additions and 22 deletions

View File

@ -95,6 +95,7 @@ xgb.get.handle <- function(object) {
#' saveRDS(bst, "xgb.model.rds") #' saveRDS(bst, "xgb.model.rds")
#' #'
#' bst1 <- readRDS("xgb.model.rds") #' bst1 <- readRDS("xgb.model.rds")
#' if (file.exists("xgb.model.rds")) file.remove("xgb.model.rds")
#' # the handle is invalid: #' # the handle is invalid:
#' print(bst1$handle) #' print(bst1$handle)
#' #'
@ -418,6 +419,7 @@ predict.xgb.Booster.handle <- function(object, ...) {
#' #'
#' xgb.save(bst, 'xgb.model') #' xgb.save(bst, 'xgb.model')
#' bst1 <- xgb.load('xgb.model') #' bst1 <- xgb.load('xgb.model')
#' if (file.exists('xgb.model')) file.remove('xgb.model')
#' print(xgb.attr(bst1, "my_attribute")) #' print(xgb.attr(bst1, "my_attribute"))
#' print(xgb.attributes(bst1)) #' print(xgb.attributes(bst1))
#' #'

View File

@ -19,6 +19,7 @@
#' dtrain <- xgb.DMatrix(train$data, label=train$label) #' dtrain <- xgb.DMatrix(train$data, label=train$label)
#' xgb.DMatrix.save(dtrain, 'xgb.DMatrix.data') #' xgb.DMatrix.save(dtrain, 'xgb.DMatrix.data')
#' dtrain <- xgb.DMatrix('xgb.DMatrix.data') #' dtrain <- xgb.DMatrix('xgb.DMatrix.data')
#' if (file.exists('xgb.DMatrix.data')) file.remove('xgb.DMatrix.data')
#' @export #' @export
xgb.DMatrix <- function(data, info = list(), missing = NA, silent = FALSE, ...) { xgb.DMatrix <- function(data, info = list(), missing = NA, silent = FALSE, ...) {
cnames <- NULL cnames <- NULL

View File

@ -11,6 +11,7 @@
#' dtrain <- xgb.DMatrix(train$data, label=train$label) #' dtrain <- xgb.DMatrix(train$data, label=train$label)
#' xgb.DMatrix.save(dtrain, 'xgb.DMatrix.data') #' xgb.DMatrix.save(dtrain, 'xgb.DMatrix.data')
#' dtrain <- xgb.DMatrix('xgb.DMatrix.data') #' dtrain <- xgb.DMatrix('xgb.DMatrix.data')
#' if (file.exists('xgb.DMatrix.data')) file.remove('xgb.DMatrix.data')
#' @export #' @export
xgb.DMatrix.save <- function(dmatrix, fname) { xgb.DMatrix.save <- function(dmatrix, fname) {
if (typeof(fname) != "character") if (typeof(fname) != "character")

View File

@ -28,6 +28,7 @@
#' eta = 1, nthread = 2, nrounds = 2,objective = "binary:logistic") #' eta = 1, nthread = 2, nrounds = 2,objective = "binary:logistic")
#' xgb.save(bst, 'xgb.model') #' xgb.save(bst, 'xgb.model')
#' bst <- xgb.load('xgb.model') #' bst <- xgb.load('xgb.model')
#' if (file.exists('xgb.model')) file.remove('xgb.model')
#' pred <- predict(bst, test$data) #' pred <- predict(bst, test$data)
#' @export #' @export
xgb.load <- function(modelfile) { xgb.load <- function(modelfile) {

View File

@ -27,6 +27,7 @@
#' eta = 1, nthread = 2, nrounds = 2,objective = "binary:logistic") #' eta = 1, nthread = 2, nrounds = 2,objective = "binary:logistic")
#' xgb.save(bst, 'xgb.model') #' xgb.save(bst, 'xgb.model')
#' bst <- xgb.load('xgb.model') #' bst <- xgb.load('xgb.model')
#' if (file.exists('xgb.model')) file.remove('xgb.model')
#' pred <- predict(bst, test$data) #' pred <- predict(bst, test$data)
#' @export #' @export
xgb.save <- function(model, fname) { xgb.save <- function(model, fname) {

View File

@ -7,8 +7,8 @@
\usage{ \usage{
\method{predict}{xgb.Booster}(object, newdata, missing = NA, \method{predict}{xgb.Booster}(object, newdata, missing = NA,
outputmargin = FALSE, ntreelimit = NULL, predleaf = FALSE, outputmargin = FALSE, ntreelimit = NULL, predleaf = FALSE,
predcontrib = FALSE, approxcontrib = FALSE, predcontrib = FALSE, approxcontrib = FALSE, predinteraction = FALSE,
predinteraction = FALSE, reshape = FALSE, ...) reshape = FALSE, ...)
\method{predict}{xgb.Booster.handle}(object, ...) \method{predict}{xgb.Booster.handle}(object, ...)
} }

View File

@ -39,6 +39,7 @@ bst <- xgboost(data = agaricus.train$data, label = agaricus.train$label, max_dep
saveRDS(bst, "xgb.model.rds") saveRDS(bst, "xgb.model.rds")
bst1 <- readRDS("xgb.model.rds") bst1 <- readRDS("xgb.model.rds")
if (file.exists("xgb.model.rds")) file.remove("xgb.model.rds")
# the handle is invalid: # the handle is invalid:
print(bst1$handle) print(bst1$handle)

View File

@ -31,4 +31,5 @@ train <- agaricus.train
dtrain <- xgb.DMatrix(train$data, label=train$label) dtrain <- xgb.DMatrix(train$data, label=train$label)
xgb.DMatrix.save(dtrain, 'xgb.DMatrix.data') xgb.DMatrix.save(dtrain, 'xgb.DMatrix.data')
dtrain <- xgb.DMatrix('xgb.DMatrix.data') dtrain <- xgb.DMatrix('xgb.DMatrix.data')
if (file.exists('xgb.DMatrix.data')) file.remove('xgb.DMatrix.data')
} }

View File

@ -20,4 +20,5 @@ train <- agaricus.train
dtrain <- xgb.DMatrix(train$data, label=train$label) dtrain <- xgb.DMatrix(train$data, label=train$label)
xgb.DMatrix.save(dtrain, 'xgb.DMatrix.data') xgb.DMatrix.save(dtrain, 'xgb.DMatrix.data')
dtrain <- xgb.DMatrix('xgb.DMatrix.data') dtrain <- xgb.DMatrix('xgb.DMatrix.data')
if (file.exists('xgb.DMatrix.data')) file.remove('xgb.DMatrix.data')
} }

View File

@ -73,6 +73,7 @@ xgb.attributes(bst) <- list(a = 123, b = "abc")
xgb.save(bst, 'xgb.model') xgb.save(bst, 'xgb.model')
bst1 <- xgb.load('xgb.model') bst1 <- xgb.load('xgb.model')
if (file.exists('xgb.model')) file.remove('xgb.model')
print(xgb.attr(bst1, "my_attribute")) print(xgb.attr(bst1, "my_attribute"))
print(xgb.attributes(bst1)) print(xgb.attributes(bst1))

View File

@ -4,12 +4,11 @@
\alias{xgb.cv} \alias{xgb.cv}
\title{Cross Validation} \title{Cross Validation}
\usage{ \usage{
xgb.cv(params = list(), data, nrounds, nfold, label = NULL, xgb.cv(params = list(), data, nrounds, nfold, label = NULL, missing = NA,
missing = NA, prediction = FALSE, showsd = TRUE, prediction = FALSE, showsd = TRUE, metrics = list(), obj = NULL,
metrics = list(), obj = NULL, feval = NULL, stratified = TRUE, feval = NULL, stratified = TRUE, folds = NULL, verbose = TRUE,
folds = NULL, verbose = TRUE, print_every_n = 1L, print_every_n = 1L, early_stopping_rounds = NULL, maximize = NULL,
early_stopping_rounds = NULL, maximize = NULL, callbacks = list(), callbacks = list(), ...)
...)
} }
\arguments{ \arguments{
\item{params}{the list of parameters. Commonly used ones are: \item{params}{the list of parameters. Commonly used ones are:

View File

@ -33,6 +33,7 @@ bst <- xgboost(data = train$data, label = train$label, max_depth = 2,
eta = 1, nthread = 2, nrounds = 2,objective = "binary:logistic") eta = 1, nthread = 2, nrounds = 2,objective = "binary:logistic")
xgb.save(bst, 'xgb.model') xgb.save(bst, 'xgb.model')
bst <- xgb.load('xgb.model') bst <- xgb.load('xgb.model')
if (file.exists('xgb.model')) file.remove('xgb.model')
pred <- predict(bst, test$data) pred <- predict(bst, test$data)
} }
\seealso{ \seealso{

View File

@ -5,11 +5,11 @@
\alias{xgb.plot.deepness} \alias{xgb.plot.deepness}
\title{Plot model trees deepness} \title{Plot model trees deepness}
\usage{ \usage{
xgb.ggplot.deepness(model = NULL, which = c("2x1", "max.depth", xgb.ggplot.deepness(model = NULL, which = c("2x1", "max.depth", "med.depth",
"med.depth", "med.weight")) "med.weight"))
xgb.plot.deepness(model = NULL, which = c("2x1", "max.depth", xgb.plot.deepness(model = NULL, which = c("2x1", "max.depth", "med.depth",
"med.depth", "med.weight"), plot = TRUE, ...) "med.weight"), plot = TRUE, ...)
} }
\arguments{ \arguments{
\item{model}{either an \code{xgb.Booster} model generated by the \code{xgb.train} function \item{model}{either an \code{xgb.Booster} model generated by the \code{xgb.train} function

View File

@ -9,8 +9,8 @@ xgb.ggplot.importance(importance_matrix = NULL, top_n = NULL,
measure = NULL, rel_to_first = FALSE, n_clusters = c(1:10), ...) measure = NULL, rel_to_first = FALSE, n_clusters = c(1:10), ...)
xgb.plot.importance(importance_matrix = NULL, top_n = NULL, xgb.plot.importance(importance_matrix = NULL, top_n = NULL,
measure = NULL, rel_to_first = FALSE, left_margin = 10, measure = NULL, rel_to_first = FALSE, left_margin = 10, cex = NULL,
cex = NULL, plot = TRUE, ...) plot = TRUE, ...)
} }
\arguments{ \arguments{
\item{importance_matrix}{a \code{data.table} returned by \code{\link{xgb.importance}}.} \item{importance_matrix}{a \code{data.table} returned by \code{\link{xgb.importance}}.}

View File

@ -6,8 +6,8 @@
\usage{ \usage{
xgb.plot.shap(data, shap_contrib = NULL, features = NULL, top_n = 1, xgb.plot.shap(data, shap_contrib = NULL, features = NULL, top_n = 1,
model = NULL, trees = NULL, target_class = NULL, model = NULL, trees = NULL, target_class = NULL,
approxcontrib = FALSE, subsample = NULL, n_col = 1, col = rgb(0, approxcontrib = FALSE, subsample = NULL, n_col = 1, col = rgb(0, 0, 1,
0, 1, 0.2), pch = ".", discrete_n_uniq = 5, discrete_jitter = 0.01, 0.2), pch = ".", discrete_n_uniq = 5, discrete_jitter = 0.01,
ylab = "SHAP", plot_NA = TRUE, col_NA = rgb(0.7, 0, 1, 0.6), ylab = "SHAP", plot_NA = TRUE, col_NA = rgb(0.7, 0, 1, 0.6),
pch_NA = ".", pos_NA = 1.07, plot_loess = TRUE, col_loess = 2, pch_NA = ".", pos_NA = 1.07, plot_loess = TRUE, col_loess = 2,
span_loess = 0.5, which = c("1d", "2d"), plot = TRUE, ...) span_loess = 0.5, which = c("1d", "2d"), plot = TRUE, ...)

View File

@ -33,6 +33,7 @@ bst <- xgboost(data = train$data, label = train$label, max_depth = 2,
eta = 1, nthread = 2, nrounds = 2,objective = "binary:logistic") eta = 1, nthread = 2, nrounds = 2,objective = "binary:logistic")
xgb.save(bst, 'xgb.model') xgb.save(bst, 'xgb.model')
bst <- xgb.load('xgb.model') bst <- xgb.load('xgb.model')
if (file.exists('xgb.model')) file.remove('xgb.model')
pred <- predict(bst, test$data) pred <- predict(bst, test$data)
} }
\seealso{ \seealso{

View File

@ -5,17 +5,15 @@
\alias{xgboost} \alias{xgboost}
\title{eXtreme Gradient Boosting Training} \title{eXtreme Gradient Boosting Training}
\usage{ \usage{
xgb.train(params = list(), data, nrounds, watchlist = list(), xgb.train(params = list(), data, nrounds, watchlist = list(), obj = NULL,
obj = NULL, feval = NULL, verbose = 1, print_every_n = 1L, feval = NULL, verbose = 1, print_every_n = 1L,
early_stopping_rounds = NULL, maximize = NULL, save_period = NULL, early_stopping_rounds = NULL, maximize = NULL, save_period = NULL,
save_name = "xgboost.model", xgb_model = NULL, callbacks = list(), save_name = "xgboost.model", xgb_model = NULL, callbacks = list(), ...)
...)
xgboost(data = NULL, label = NULL, missing = NA, weight = NULL, xgboost(data = NULL, label = NULL, missing = NA, weight = NULL,
params = list(), nrounds, verbose = 1, print_every_n = 1L, params = list(), nrounds, verbose = 1, print_every_n = 1L,
early_stopping_rounds = NULL, maximize = NULL, save_period = NULL, early_stopping_rounds = NULL, maximize = NULL, save_period = NULL,
save_name = "xgboost.model", xgb_model = NULL, callbacks = list(), save_name = "xgboost.model", xgb_model = NULL, callbacks = list(), ...)
...)
} }
\arguments{ \arguments{
\item{params}{the list of parameters. \item{params}{the list of parameters.

View File

@ -163,6 +163,7 @@ test_that("xgb-attribute functionality", {
# serializing: # serializing:
xgb.save(bst.Tree, 'xgb.model') xgb.save(bst.Tree, 'xgb.model')
bst <- xgb.load('xgb.model') bst <- xgb.load('xgb.model')
if (file.exists('xgb.model')) file.remove('xgb.model')
expect_equal(xgb.attr(bst, "my_attr"), val) expect_equal(xgb.attr(bst, "my_attr"), val)
expect_equal(xgb.attributes(bst), list.ch) expect_equal(xgb.attributes(bst), list.ch)
# deletion: # deletion:
@ -199,10 +200,12 @@ if (grepl('Windows', Sys.info()[['sysname']]) ||
test_that("xgb.Booster serializing as R object works", { test_that("xgb.Booster serializing as R object works", {
saveRDS(bst.Tree, 'xgb.model.rds') saveRDS(bst.Tree, 'xgb.model.rds')
bst <- readRDS('xgb.model.rds') bst <- readRDS('xgb.model.rds')
if (file.exists('xgb.model.rds')) file.remove('xgb.model.rds')
dtrain <- xgb.DMatrix(sparse_matrix, label = label) dtrain <- xgb.DMatrix(sparse_matrix, label = label)
expect_equal(predict(bst.Tree, dtrain), predict(bst, dtrain), tolerance = float_tolerance) expect_equal(predict(bst.Tree, dtrain), predict(bst, dtrain), tolerance = float_tolerance)
expect_equal(xgb.dump(bst.Tree), xgb.dump(bst)) expect_equal(xgb.dump(bst.Tree), xgb.dump(bst))
xgb.save(bst, 'xgb.model') xgb.save(bst, 'xgb.model')
if (file.exists('xgb.model')) file.remove('xgb.model')
nil_ptr <- new("externalptr") nil_ptr <- new("externalptr")
class(nil_ptr) <- "xgb.Booster.handle" class(nil_ptr) <- "xgb.Booster.handle"
expect_true(identical(bst$handle, nil_ptr)) expect_true(identical(bst$handle, nil_ptr))