[doc] Add missing document for pyspark ranker. [skip ci] (#8692)
This commit is contained in:
parent
78396f8a6e
commit
175986b739
@ -173,3 +173,13 @@ PySpark API
|
||||
:members:
|
||||
:inherited-members:
|
||||
:show-inheritance:
|
||||
|
||||
.. autoclass:: xgboost.spark.SparkXGBRanker
|
||||
:members:
|
||||
:inherited-members:
|
||||
:show-inheritance:
|
||||
|
||||
.. autoclass:: xgboost.spark.SparkXGBRankerModel
|
||||
:members:
|
||||
:inherited-members:
|
||||
:show-inheritance:
|
||||
|
||||
@ -45,7 +45,7 @@ such as ``weight_col``, ``validation_indicator_col``, ``use_gpu``, for details p
|
||||
|
||||
The following code snippet shows how to train a spark xgboost regressor model,
|
||||
first we need to prepare a training dataset as a spark dataframe contains
|
||||
"label" column and "features" column(s), the "features" column(s) must be ``pyspark.ml.linalg.Vector`
|
||||
"label" column and "features" column(s), the "features" column(s) must be ``pyspark.ml.linalg.Vector``
|
||||
type or spark array type or a list of feature column names.
|
||||
|
||||
|
||||
@ -56,7 +56,7 @@ type or spark array type or a list of feature column names.
|
||||
|
||||
The following code snippet shows how to predict test data using a spark xgboost regressor model,
|
||||
first we need to prepare a test dataset as a spark dataframe contains
|
||||
"features" and "label" column, the "features" column must be ``pyspark.ml.linalg.Vector`
|
||||
"features" and "label" column, the "features" column must be ``pyspark.ml.linalg.Vector``
|
||||
type or spark array type.
|
||||
|
||||
.. code-block:: python
|
||||
@ -97,7 +97,7 @@ Aside from the PySpark and XGBoost modules, we also need the `cuDF
|
||||
<https://docs.rapids.ai/api/cudf/stable/>`_ package for handling Spark dataframe. We
|
||||
recommend using either Conda or Virtualenv to manage python dependencies for PySpark
|
||||
jobs. Please refer to `How to Manage Python Dependencies in PySpark
|
||||
<https://www.databricks.com/blog/2020/12/22/how-to-manage-python-dependencies-in-pyspark.html>`_
|
||||
<https://www.databricks.com/blog/2020/12/22/how-to-manage-python-dependencies-in-pyspark.html>`_
|
||||
for more details on PySpark dependency management.
|
||||
|
||||
In short, to create a Python environment that can be sent to a remote cluster using
|
||||
|
||||
@ -1,5 +1,4 @@
|
||||
"""PySpark XGBoost integration interface
|
||||
"""
|
||||
"""PySpark XGBoost integration interface"""
|
||||
|
||||
try:
|
||||
import pyspark
|
||||
@ -10,6 +9,7 @@ from .estimator import (
|
||||
SparkXGBClassifier,
|
||||
SparkXGBClassifierModel,
|
||||
SparkXGBRanker,
|
||||
SparkXGBRankerModel,
|
||||
SparkXGBRegressor,
|
||||
SparkXGBRegressorModel,
|
||||
)
|
||||
@ -20,4 +20,5 @@ __all__ = [
|
||||
"SparkXGBRegressor",
|
||||
"SparkXGBRegressorModel",
|
||||
"SparkXGBRanker",
|
||||
"SparkXGBRankerModel",
|
||||
]
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user