Optimise histogram kernels (#8118)
This commit is contained in:
parent
40a10c217d
commit
1703dc330f
@ -1,19 +1,18 @@
|
|||||||
/*!
|
/*!
|
||||||
* Copyright 2020-2021 by XGBoost Contributors
|
* Copyright 2020-2021 by XGBoost Contributors
|
||||||
*/
|
*/
|
||||||
#include <thrust/reduce.h>
|
|
||||||
#include <thrust/iterator/transform_iterator.h>
|
#include <thrust/iterator/transform_iterator.h>
|
||||||
|
#include <thrust/reduce.h>
|
||||||
|
|
||||||
#include <algorithm>
|
#include <algorithm>
|
||||||
#include <ctgmath>
|
#include <ctgmath>
|
||||||
#include <limits>
|
#include <limits>
|
||||||
|
|
||||||
#include "xgboost/base.h"
|
|
||||||
#include "row_partitioner.cuh"
|
|
||||||
|
|
||||||
#include "histogram.cuh"
|
|
||||||
|
|
||||||
#include "../../data/ellpack_page.cuh"
|
|
||||||
#include "../../common/device_helpers.cuh"
|
#include "../../common/device_helpers.cuh"
|
||||||
|
#include "../../data/ellpack_page.cuh"
|
||||||
|
#include "histogram.cuh"
|
||||||
|
#include "row_partitioner.cuh"
|
||||||
|
#include "xgboost/base.h"
|
||||||
|
|
||||||
namespace xgboost {
|
namespace xgboost {
|
||||||
namespace tree {
|
namespace tree {
|
||||||
@ -59,12 +58,8 @@ __host__ XGBOOST_DEV_INLINE Pair operator+(Pair const& lhs, Pair const& rhs) {
|
|||||||
} // anonymous namespace
|
} // anonymous namespace
|
||||||
|
|
||||||
struct Clip : public thrust::unary_function<GradientPair, Pair> {
|
struct Clip : public thrust::unary_function<GradientPair, Pair> {
|
||||||
static XGBOOST_DEV_INLINE float Pclip(float v) {
|
static XGBOOST_DEV_INLINE float Pclip(float v) { return v > 0 ? v : 0; }
|
||||||
return v > 0 ? v : 0;
|
static XGBOOST_DEV_INLINE float Nclip(float v) { return v < 0 ? abs(v) : 0; }
|
||||||
}
|
|
||||||
static XGBOOST_DEV_INLINE float Nclip(float v) {
|
|
||||||
return v < 0 ? abs(v) : 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
XGBOOST_DEV_INLINE Pair operator()(GradientPair x) const {
|
XGBOOST_DEV_INLINE Pair operator()(GradientPair x) const {
|
||||||
auto pg = Pclip(x.GetGrad());
|
auto pg = Pclip(x.GetGrad());
|
||||||
@ -73,7 +68,7 @@ struct Clip : public thrust::unary_function<GradientPair, Pair> {
|
|||||||
auto ng = Nclip(x.GetGrad());
|
auto ng = Nclip(x.GetGrad());
|
||||||
auto nh = Nclip(x.GetHess());
|
auto nh = Nclip(x.GetHess());
|
||||||
|
|
||||||
return { GradientPair{ pg, ph }, GradientPair{ ng, nh } };
|
return {GradientPair{pg, ph}, GradientPair{ng, nh}};
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
@ -82,18 +77,18 @@ HistRounding<GradientSumT> CreateRoundingFactor(common::Span<GradientPair const>
|
|||||||
using T = typename GradientSumT::ValueT;
|
using T = typename GradientSumT::ValueT;
|
||||||
dh::XGBCachingDeviceAllocator<char> alloc;
|
dh::XGBCachingDeviceAllocator<char> alloc;
|
||||||
|
|
||||||
thrust::device_ptr<GradientPair const> gpair_beg {gpair.data()};
|
thrust::device_ptr<GradientPair const> gpair_beg{gpair.data()};
|
||||||
thrust::device_ptr<GradientPair const> gpair_end {gpair.data() + gpair.size()};
|
thrust::device_ptr<GradientPair const> gpair_end{gpair.data() + gpair.size()};
|
||||||
auto beg = thrust::make_transform_iterator(gpair_beg, Clip());
|
auto beg = thrust::make_transform_iterator(gpair_beg, Clip());
|
||||||
auto end = thrust::make_transform_iterator(gpair_end, Clip());
|
auto end = thrust::make_transform_iterator(gpair_end, Clip());
|
||||||
Pair p = dh::Reduce(thrust::cuda::par(alloc), beg, end, Pair{}, thrust::plus<Pair>{});
|
Pair p = dh::Reduce(thrust::cuda::par(alloc), beg, end, Pair{}, thrust::plus<Pair>{});
|
||||||
GradientPair positive_sum {p.first}, negative_sum {p.second};
|
GradientPair positive_sum{p.first}, negative_sum{p.second};
|
||||||
|
|
||||||
auto histogram_rounding = GradientSumT {
|
auto histogram_rounding =
|
||||||
CreateRoundingFactor<T>(std::max(positive_sum.GetGrad(), negative_sum.GetGrad()),
|
GradientSumT{CreateRoundingFactor<T>(std::max(positive_sum.GetGrad(), negative_sum.GetGrad()),
|
||||||
gpair.size()),
|
gpair.size()),
|
||||||
CreateRoundingFactor<T>(std::max(positive_sum.GetHess(), negative_sum.GetHess()),
|
CreateRoundingFactor<T>(std::max(positive_sum.GetHess(), negative_sum.GetHess()),
|
||||||
gpair.size()) };
|
gpair.size())};
|
||||||
|
|
||||||
using IntT = typename HistRounding<GradientSumT>::SharedSumT::ValueT;
|
using IntT = typename HistRounding<GradientSumT>::SharedSumT::ValueT;
|
||||||
|
|
||||||
@ -102,8 +97,7 @@ HistRounding<GradientSumT> CreateRoundingFactor(common::Span<GradientPair const>
|
|||||||
*/
|
*/
|
||||||
GradientSumT to_floating_point =
|
GradientSumT to_floating_point =
|
||||||
histogram_rounding /
|
histogram_rounding /
|
||||||
T(IntT(1) << (sizeof(typename GradientSumT::ValueT) * 8 -
|
T(IntT(1) << (sizeof(typename GradientSumT::ValueT) * 8 - 2)); // keep 1 for sign bit
|
||||||
2)); // keep 1 for sign bit
|
|
||||||
/**
|
/**
|
||||||
* Factor for converting gradients from floating-point to fixed-point. For
|
* Factor for converting gradients from floating-point to fixed-point. For
|
||||||
* f64:
|
* f64:
|
||||||
@ -113,66 +107,149 @@ HistRounding<GradientSumT> CreateRoundingFactor(common::Span<GradientPair const>
|
|||||||
* rounding is calcuated as exp(m), see the rounding factor calcuation for
|
* rounding is calcuated as exp(m), see the rounding factor calcuation for
|
||||||
* details.
|
* details.
|
||||||
*/
|
*/
|
||||||
GradientSumT to_fixed_point = GradientSumT(
|
GradientSumT to_fixed_point =
|
||||||
T(1) / to_floating_point.GetGrad(), T(1) / to_floating_point.GetHess());
|
GradientSumT(T(1) / to_floating_point.GetGrad(), T(1) / to_floating_point.GetHess());
|
||||||
|
|
||||||
return {histogram_rounding, to_fixed_point, to_floating_point};
|
return {histogram_rounding, to_fixed_point, to_floating_point};
|
||||||
}
|
}
|
||||||
|
|
||||||
template HistRounding<GradientPairPrecise>
|
template HistRounding<GradientPairPrecise> CreateRoundingFactor(
|
||||||
CreateRoundingFactor(common::Span<GradientPair const> gpair);
|
common::Span<GradientPair const> gpair);
|
||||||
template HistRounding<GradientPair>
|
template HistRounding<GradientPair> CreateRoundingFactor(common::Span<GradientPair const> gpair);
|
||||||
CreateRoundingFactor(common::Span<GradientPair const> gpair);
|
|
||||||
|
|
||||||
template <typename GradientSumT, bool use_shared_memory_histograms>
|
template <typename GradientSumT, int kBlockThreads, int kItemsPerThread,
|
||||||
__global__ void SharedMemHistKernel(EllpackDeviceAccessor matrix,
|
int kItemsPerTile = kBlockThreads* kItemsPerThread>
|
||||||
FeatureGroupsAccessor feature_groups,
|
class HistogramAgent {
|
||||||
common::Span<const RowPartitioner::RowIndexT> d_ridx,
|
using SharedSumT = typename HistRounding<GradientSumT>::SharedSumT;
|
||||||
GradientSumT* __restrict__ d_node_hist,
|
SharedSumT* smem_arr_;
|
||||||
const GradientPair* __restrict__ d_gpair,
|
GradientSumT* d_node_hist_;
|
||||||
HistRounding<GradientSumT> const rounding) {
|
dh::LDGIterator<const RowPartitioner::RowIndexT> d_ridx_;
|
||||||
|
const GradientPair* d_gpair_;
|
||||||
|
const FeatureGroup group_;
|
||||||
|
const EllpackDeviceAccessor& matrix_;
|
||||||
|
const int feature_stride_;
|
||||||
|
const std::size_t n_elements_;
|
||||||
|
const HistRounding<GradientSumT>& rounding_;
|
||||||
|
|
||||||
|
public:
|
||||||
|
__device__ HistogramAgent(SharedSumT* smem_arr, GradientSumT* __restrict__ d_node_hist,
|
||||||
|
const FeatureGroup& group, const EllpackDeviceAccessor& matrix,
|
||||||
|
common::Span<const RowPartitioner::RowIndexT> d_ridx,
|
||||||
|
const HistRounding<GradientSumT>& rounding, const GradientPair* d_gpair)
|
||||||
|
: smem_arr_(smem_arr),
|
||||||
|
d_node_hist_(d_node_hist),
|
||||||
|
d_ridx_(d_ridx.data()),
|
||||||
|
group_(group),
|
||||||
|
matrix_(matrix),
|
||||||
|
feature_stride_(matrix.is_dense ? group.num_features : matrix.row_stride),
|
||||||
|
n_elements_(feature_stride_ * d_ridx.size()),
|
||||||
|
rounding_(rounding),
|
||||||
|
d_gpair_(d_gpair) {}
|
||||||
|
__device__ void ProcessPartialTileShared(std::size_t offset) {
|
||||||
|
for (std::size_t idx = offset + threadIdx.x;
|
||||||
|
idx < min(offset + kBlockThreads * kItemsPerTile, n_elements_); idx += kBlockThreads) {
|
||||||
|
int ridx = d_ridx_[idx / feature_stride_];
|
||||||
|
int gidx =
|
||||||
|
matrix_
|
||||||
|
.gidx_iter[ridx * matrix_.row_stride + group_.start_feature + idx % feature_stride_] -
|
||||||
|
group_.start_bin;
|
||||||
|
if (matrix_.is_dense || gidx != matrix_.NumBins()) {
|
||||||
|
auto adjusted = rounding_.ToFixedPoint(d_gpair_[ridx]);
|
||||||
|
dh::AtomicAddGpair(smem_arr_ + gidx, adjusted);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// Instruction level parallelism by loop unrolling
|
||||||
|
// Allows the kernel to pipeline many operations while waiting for global memory
|
||||||
|
// Increases the throughput of this kernel significantly
|
||||||
|
__device__ void ProcessFullTileShared(std::size_t offset) {
|
||||||
|
std::size_t idx[kItemsPerThread];
|
||||||
|
int ridx[kItemsPerThread];
|
||||||
|
int gidx[kItemsPerThread];
|
||||||
|
GradientPair gpair[kItemsPerThread];
|
||||||
|
#pragma unroll
|
||||||
|
for (int i = 0; i < kItemsPerThread; i++) {
|
||||||
|
idx[i] = offset + i * kBlockThreads + threadIdx.x;
|
||||||
|
}
|
||||||
|
#pragma unroll
|
||||||
|
for (int i = 0; i < kItemsPerThread; i++) {
|
||||||
|
ridx[i] = d_ridx_[idx[i] / feature_stride_];
|
||||||
|
}
|
||||||
|
#pragma unroll
|
||||||
|
for (int i = 0; i < kItemsPerThread; i++) {
|
||||||
|
gpair[i] = d_gpair_[ridx[i]];
|
||||||
|
gidx[i] = matrix_.gidx_iter[ridx[i] * matrix_.row_stride + group_.start_feature +
|
||||||
|
idx[i] % feature_stride_];
|
||||||
|
}
|
||||||
|
#pragma unroll
|
||||||
|
for (int i = 0; i < kItemsPerThread; i++) {
|
||||||
|
if ((matrix_.is_dense || gidx[i] != matrix_.NumBins())) {
|
||||||
|
auto adjusted = rounding_.ToFixedPoint(gpair[i]);
|
||||||
|
dh::AtomicAddGpair(smem_arr_ + gidx[i] - group_.start_bin, adjusted);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
__device__ void BuildHistogramWithShared() {
|
||||||
|
dh::BlockFill(smem_arr_, group_.num_bins, SharedSumT());
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
std::size_t offset = blockIdx.x * kItemsPerTile;
|
||||||
|
while (offset + kItemsPerTile <= n_elements_) {
|
||||||
|
ProcessFullTileShared(offset);
|
||||||
|
offset += kItemsPerTile * gridDim.x;
|
||||||
|
}
|
||||||
|
ProcessPartialTileShared(offset);
|
||||||
|
|
||||||
|
// Write shared memory back to global memory
|
||||||
|
__syncthreads();
|
||||||
|
for (auto i : dh::BlockStrideRange(0, group_.num_bins)) {
|
||||||
|
auto truncated = rounding_.ToFloatingPoint(smem_arr_[i]);
|
||||||
|
dh::AtomicAddGpair(d_node_hist_ + group_.start_bin + i, truncated);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__device__ void BuildHistogramWithGlobal() {
|
||||||
|
for (auto idx : dh::GridStrideRange(static_cast<std::size_t>(0), n_elements_)) {
|
||||||
|
int ridx = d_ridx_[idx / feature_stride_];
|
||||||
|
int gidx =
|
||||||
|
matrix_
|
||||||
|
.gidx_iter[ridx * matrix_.row_stride + group_.start_feature + idx % feature_stride_];
|
||||||
|
if (matrix_.is_dense || gidx != matrix_.NumBins()) {
|
||||||
|
// If we are not using shared memory, accumulate the values directly into
|
||||||
|
// global memory
|
||||||
|
GradientSumT truncated{
|
||||||
|
TruncateWithRoundingFactor<GradientSumT::ValueT>(rounding_.rounding.GetGrad(),
|
||||||
|
d_gpair_[ridx].GetGrad()),
|
||||||
|
TruncateWithRoundingFactor<GradientSumT::ValueT>(rounding_.rounding.GetHess(),
|
||||||
|
d_gpair_[ridx].GetHess()),
|
||||||
|
};
|
||||||
|
dh::AtomicAddGpair(d_node_hist_ + gidx, truncated);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename GradientSumT, bool use_shared_memory_histograms, int kBlockThreads,
|
||||||
|
int kItemsPerThread>
|
||||||
|
__global__ void __launch_bounds__(kBlockThreads)
|
||||||
|
SharedMemHistKernel(const EllpackDeviceAccessor matrix,
|
||||||
|
const FeatureGroupsAccessor feature_groups,
|
||||||
|
common::Span<const RowPartitioner::RowIndexT> d_ridx,
|
||||||
|
GradientSumT* __restrict__ d_node_hist,
|
||||||
|
const GradientPair* __restrict__ d_gpair,
|
||||||
|
HistRounding<GradientSumT> const rounding) {
|
||||||
using SharedSumT = typename HistRounding<GradientSumT>::SharedSumT;
|
using SharedSumT = typename HistRounding<GradientSumT>::SharedSumT;
|
||||||
using T = typename GradientSumT::ValueT;
|
using T = typename GradientSumT::ValueT;
|
||||||
|
|
||||||
extern __shared__ char smem[];
|
extern __shared__ char smem[];
|
||||||
FeatureGroup group = feature_groups[blockIdx.y];
|
const FeatureGroup group = feature_groups[blockIdx.y];
|
||||||
SharedSumT *smem_arr = reinterpret_cast<SharedSumT *>(smem);
|
SharedSumT* smem_arr = reinterpret_cast<SharedSumT*>(smem);
|
||||||
|
auto agent = HistogramAgent<GradientSumT, kBlockThreads, kItemsPerThread>(
|
||||||
|
smem_arr, d_node_hist, group, matrix, d_ridx, rounding, d_gpair);
|
||||||
if (use_shared_memory_histograms) {
|
if (use_shared_memory_histograms) {
|
||||||
dh::BlockFill(smem_arr, group.num_bins, SharedSumT());
|
agent.BuildHistogramWithShared();
|
||||||
__syncthreads();
|
} else {
|
||||||
}
|
agent.BuildHistogramWithGlobal();
|
||||||
int feature_stride = matrix.is_dense ? group.num_features : matrix.row_stride;
|
|
||||||
size_t n_elements = feature_stride * d_ridx.size();
|
|
||||||
for (auto idx : dh::GridStrideRange(static_cast<size_t>(0), n_elements)) {
|
|
||||||
int ridx = d_ridx[idx / feature_stride];
|
|
||||||
int gidx = matrix.gidx_iter[ridx * matrix.row_stride + group.start_feature +
|
|
||||||
idx % feature_stride];
|
|
||||||
if (gidx != matrix.NumBins()) {
|
|
||||||
// If we are not using shared memory, accumulate the values directly into
|
|
||||||
// global memory
|
|
||||||
gidx = use_shared_memory_histograms ? gidx - group.start_bin : gidx;
|
|
||||||
if (use_shared_memory_histograms) {
|
|
||||||
auto adjusted = rounding.ToFixedPoint(d_gpair[ridx]);
|
|
||||||
dh::AtomicAddGpair(smem_arr + gidx, adjusted);
|
|
||||||
} else {
|
|
||||||
GradientSumT truncated{
|
|
||||||
TruncateWithRoundingFactor<T>(rounding.rounding.GetGrad(),
|
|
||||||
d_gpair[ridx].GetGrad()),
|
|
||||||
TruncateWithRoundingFactor<T>(rounding.rounding.GetHess(),
|
|
||||||
d_gpair[ridx].GetHess()),
|
|
||||||
};
|
|
||||||
dh::AtomicAddGpair(d_node_hist + gidx, truncated);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if (use_shared_memory_histograms) {
|
|
||||||
// Write shared memory back to global memory
|
|
||||||
__syncthreads();
|
|
||||||
for (auto i : dh::BlockStrideRange(0, group.num_bins)) {
|
|
||||||
auto truncated = rounding.ToFloatingPoint(smem_arr[i]);
|
|
||||||
dh::AtomicAddGpair(d_node_hist + group.start_bin + i, truncated);
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -182,78 +259,71 @@ void BuildGradientHistogram(EllpackDeviceAccessor const& matrix,
|
|||||||
common::Span<GradientPair const> gpair,
|
common::Span<GradientPair const> gpair,
|
||||||
common::Span<const uint32_t> d_ridx,
|
common::Span<const uint32_t> d_ridx,
|
||||||
common::Span<GradientSumT> histogram,
|
common::Span<GradientSumT> histogram,
|
||||||
HistRounding<GradientSumT> rounding,
|
HistRounding<GradientSumT> rounding, bool force_global_memory) {
|
||||||
bool force_global_memory) {
|
|
||||||
// decide whether to use shared memory
|
// decide whether to use shared memory
|
||||||
int device = 0;
|
int device = 0;
|
||||||
dh::safe_cuda(cudaGetDevice(&device));
|
dh::safe_cuda(cudaGetDevice(&device));
|
||||||
// opt into maximum shared memory for the kernel if necessary
|
// opt into maximum shared memory for the kernel if necessary
|
||||||
size_t max_shared_memory = dh::MaxSharedMemoryOptin(device);
|
size_t max_shared_memory = dh::MaxSharedMemoryOptin(device);
|
||||||
|
|
||||||
size_t smem_size = sizeof(typename HistRounding<GradientSumT>::SharedSumT) *
|
size_t smem_size =
|
||||||
feature_groups.max_group_bins;
|
sizeof(typename HistRounding<GradientSumT>::SharedSumT) * feature_groups.max_group_bins;
|
||||||
bool shared = !force_global_memory && smem_size <= max_shared_memory;
|
bool shared = !force_global_memory && smem_size <= max_shared_memory;
|
||||||
smem_size = shared ? smem_size : 0;
|
smem_size = shared ? smem_size : 0;
|
||||||
|
|
||||||
|
constexpr int kBlockThreads = 1024;
|
||||||
|
constexpr int kItemsPerThread = 8;
|
||||||
|
constexpr int kItemsPerTile = kBlockThreads * kItemsPerThread;
|
||||||
|
|
||||||
auto runit = [&](auto kernel) {
|
auto runit = [&](auto kernel) {
|
||||||
if (shared) {
|
if (shared) {
|
||||||
dh::safe_cuda(cudaFuncSetAttribute(
|
dh::safe_cuda(cudaFuncSetAttribute(kernel, cudaFuncAttributeMaxDynamicSharedMemorySize,
|
||||||
kernel, cudaFuncAttributeMaxDynamicSharedMemorySize,
|
max_shared_memory));
|
||||||
max_shared_memory));
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// determine the launch configuration
|
// determine the launch configuration
|
||||||
int min_grid_size;
|
|
||||||
int block_threads = 1024;
|
|
||||||
dh::safe_cuda(cudaOccupancyMaxPotentialBlockSize(
|
|
||||||
&min_grid_size, &block_threads, kernel, smem_size, 0));
|
|
||||||
|
|
||||||
int num_groups = feature_groups.NumGroups();
|
int num_groups = feature_groups.NumGroups();
|
||||||
int n_mps = 0;
|
int n_mps = 0;
|
||||||
dh::safe_cuda(
|
dh::safe_cuda(cudaDeviceGetAttribute(&n_mps, cudaDevAttrMultiProcessorCount, device));
|
||||||
cudaDeviceGetAttribute(&n_mps, cudaDevAttrMultiProcessorCount, device));
|
|
||||||
int n_blocks_per_mp = 0;
|
int n_blocks_per_mp = 0;
|
||||||
dh::safe_cuda(cudaOccupancyMaxActiveBlocksPerMultiprocessor(
|
dh::safe_cuda(cudaOccupancyMaxActiveBlocksPerMultiprocessor(&n_blocks_per_mp, kernel,
|
||||||
&n_blocks_per_mp, kernel, block_threads, smem_size));
|
kBlockThreads, smem_size));
|
||||||
|
// This gives the number of blocks to keep the device occupied
|
||||||
|
// Use this as the maximum number of blocks
|
||||||
unsigned grid_size = n_blocks_per_mp * n_mps;
|
unsigned grid_size = n_blocks_per_mp * n_mps;
|
||||||
|
|
||||||
// TODO(canonizer): This is really a hack, find a better way to distribute
|
// Otherwise launch blocks such that each block has a minimum amount of work to do
|
||||||
// the data among thread blocks. The intention is to generate enough thread
|
// There are fixed costs to launching each block, e.g. zeroing shared memory
|
||||||
// blocks to fill the GPU, but avoid having too many thread blocks, as this
|
// The below amount of minimum work was found by experimentation
|
||||||
// is less efficient when the number of rows is low. At least one thread
|
constexpr int kMinItemsPerBlock = kItemsPerTile;
|
||||||
// block per feature group is required. The number of thread blocks:
|
int columns_per_group = common::DivRoundUp(matrix.row_stride, feature_groups.NumGroups());
|
||||||
// - for num_groups <= num_groups_threshold, around grid_size * num_groups
|
// Average number of matrix elements processed by each group
|
||||||
// - for num_groups_threshold <= num_groups <= num_groups_threshold *
|
std::size_t items_per_group = d_ridx.size() * columns_per_group;
|
||||||
// grid_size,
|
|
||||||
// around grid_size * num_groups_threshold
|
// Allocate number of blocks such that each block has about kMinItemsPerBlock work
|
||||||
// - for num_groups_threshold * grid_size <= num_groups, around num_groups
|
// Up to a maximum where the device is saturated
|
||||||
int num_groups_threshold = 4;
|
grid_size =
|
||||||
grid_size = common::DivRoundUp(
|
min(grid_size,
|
||||||
grid_size, common::DivRoundUp(num_groups, num_groups_threshold));
|
unsigned(common::DivRoundUp(items_per_group, kMinItemsPerBlock)));
|
||||||
|
|
||||||
using T = typename GradientSumT::ValueT;
|
|
||||||
dh::LaunchKernel {dim3(grid_size, num_groups),
|
dh::LaunchKernel {dim3(grid_size, num_groups),
|
||||||
static_cast<uint32_t>(block_threads),
|
static_cast<uint32_t>(kBlockThreads), smem_size}(
|
||||||
smem_size} (kernel, matrix, feature_groups, d_ridx,
|
kernel, matrix, feature_groups, d_ridx, histogram.data(), gpair.data(), rounding);
|
||||||
histogram.data(), gpair.data(), rounding);
|
|
||||||
};
|
};
|
||||||
|
|
||||||
if (shared) {
|
if (shared) {
|
||||||
runit(SharedMemHistKernel<GradientSumT, true>);
|
runit(SharedMemHistKernel<GradientSumT, true, kBlockThreads, kItemsPerThread>);
|
||||||
} else {
|
} else {
|
||||||
runit(SharedMemHistKernel<GradientSumT, false>);
|
runit(SharedMemHistKernel<GradientSumT, false, kBlockThreads, kItemsPerThread>);
|
||||||
}
|
}
|
||||||
|
|
||||||
dh::safe_cuda(cudaGetLastError());
|
dh::safe_cuda(cudaGetLastError());
|
||||||
}
|
}
|
||||||
|
|
||||||
template void BuildGradientHistogram<GradientPairPrecise>(
|
template void BuildGradientHistogram<GradientPairPrecise>(
|
||||||
EllpackDeviceAccessor const& matrix,
|
EllpackDeviceAccessor const& matrix, FeatureGroupsAccessor const& feature_groups,
|
||||||
FeatureGroupsAccessor const& feature_groups,
|
common::Span<GradientPair const> gpair, common::Span<const uint32_t> ridx,
|
||||||
common::Span<GradientPair const> gpair,
|
common::Span<GradientPairPrecise> histogram, HistRounding<GradientPairPrecise> rounding,
|
||||||
common::Span<const uint32_t> ridx,
|
|
||||||
common::Span<GradientPairPrecise> histogram,
|
|
||||||
HistRounding<GradientPairPrecise> rounding,
|
|
||||||
bool force_global_memory);
|
bool force_global_memory);
|
||||||
|
|
||||||
} // namespace tree
|
} // namespace tree
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user