Small updates to GPU documentation (#5483)
This commit is contained in:
parent
a9313802ea
commit
15800107ad
@ -26,7 +26,7 @@ Algorithms
|
||||
+-----------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
||||
| tree_method | Description |
|
||||
+=======================+=======================================================================================================================================================================+
|
||||
| gpu_hist | Equivalent to the XGBoost fast histogram algorithm. Much faster and uses considerably less memory. NOTE: Will run very slowly on GPUs older than Pascal architecture. |
|
||||
| gpu_hist | Equivalent to the XGBoost fast histogram algorithm. Much faster and uses considerably less memory. NOTE: May run very slowly on GPUs older than Pascal architecture. |
|
||||
+-----------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
||||
|
||||
Supported parameters
|
||||
@ -50,8 +50,6 @@ Supported parameters
|
||||
+--------------------------------+--------------+
|
||||
| ``gpu_id`` | |tick| |
|
||||
+--------------------------------+--------------+
|
||||
| ``n_gpus`` (deprecated) | |tick| |
|
||||
+--------------------------------+--------------+
|
||||
| ``predictor`` | |tick| |
|
||||
+--------------------------------+--------------+
|
||||
| ``grow_policy`` | |tick| |
|
||||
@ -85,10 +83,6 @@ The GPU algorithms currently work with CLI, Python and R packages. See :doc:`/bu
|
||||
XGBRegressor(tree_method='gpu_hist', gpu_id=0)
|
||||
|
||||
|
||||
Single Node Multi-GPU
|
||||
=====================
|
||||
.. note:: Single node multi-GPU training with `n_gpus` parameter is deprecated after 0.90. Please use distributed GPU training with one process per GPU.
|
||||
|
||||
Multi-node Multi-GPU Training
|
||||
=============================
|
||||
XGBoost supports fully distributed GPU training using `Dask <https://dask.org/>`_. For
|
||||
@ -128,11 +122,11 @@ Most of the objective functions implemented in XGBoost can be run on GPU. Follo
|
||||
+--------------------+-------------+
|
||||
| survival:cox | |cross| |
|
||||
+--------------------+-------------+
|
||||
| rank:pairwise | |cross| |
|
||||
| rank:pairwise | |tick| |
|
||||
+--------------------+-------------+
|
||||
| rank:ndcg | |cross| |
|
||||
| rank:ndcg | |tick| |
|
||||
+--------------------+-------------+
|
||||
| rank:map | |cross| |
|
||||
| rank:map | |tick| |
|
||||
+--------------------+-------------+
|
||||
|
||||
Objective will run on GPU if GPU updater (``gpu_hist``), otherwise they will run on CPU by
|
||||
@ -160,13 +154,13 @@ Following table shows current support status for evaluation metrics on the GPU.
|
||||
+-----------------+-------------+
|
||||
| mlogloss | |tick| |
|
||||
+-----------------+-------------+
|
||||
| auc | |cross| |
|
||||
| auc | |tick| |
|
||||
+-----------------+-------------+
|
||||
| aucpr | |cross| |
|
||||
+-----------------+-------------+
|
||||
| ndcg | |cross| |
|
||||
| ndcg | |tick| |
|
||||
+-----------------+-------------+
|
||||
| map | |cross| |
|
||||
| map | |tick| |
|
||||
+-----------------+-------------+
|
||||
| poisson-nloglik | |tick| |
|
||||
+-----------------+-------------+
|
||||
@ -188,21 +182,18 @@ You can run benchmarks on synthetic data for binary classification:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
python tests/benchmark/benchmark.py
|
||||
python tests/benchmark/benchmark_tree.py --tree_method=gpu_hist
|
||||
python tests/benchmark/benchmark_tree.py --tree_method=hist
|
||||
|
||||
Training time time on 1,000,000 rows x 50 columns with 500 boosting iterations and 0.25/0.75 test/train split on i7-6700K CPU @ 4.00GHz and Pascal Titan X yields the following results:
|
||||
Training time on 1,000,000 rows x 50 columns of random data with 500 boosting iterations and 0.25/0.75 test/train split with AMD Ryzen 7 2700 8 core @3.20GHz and Nvidia 1080ti yields the following results:
|
||||
|
||||
+--------------+----------+
|
||||
| tree_method | Time (s) |
|
||||
+==============+==========+
|
||||
| gpu_hist | 13.87 |
|
||||
| gpu_hist | 12.57 |
|
||||
+--------------+----------+
|
||||
| hist | 63.55 |
|
||||
| hist | 36.01 |
|
||||
+--------------+----------+
|
||||
| exact | 1082.20 |
|
||||
+--------------+----------+
|
||||
|
||||
See `GPU Accelerated XGBoost <https://xgboost.ai/2016/12/14/GPU-accelerated-xgboost.html>`_ and `Updates to the XGBoost GPU algorithms <https://xgboost.ai/2018/07/04/gpu-xgboost-update.html>`_ for additional performance benchmarks of the ``gpu_hist`` tree method.
|
||||
|
||||
Memory usage
|
||||
============
|
||||
@ -241,8 +232,10 @@ Many thanks to the following contributors (alphabetical order):
|
||||
* Jonathan C. McKinney
|
||||
* Matthew Jones
|
||||
* Philip Cho
|
||||
* Rong Ou
|
||||
* Rory Mitchell
|
||||
* Shankara Rao Thejaswi Nanditale
|
||||
* Sriram Chandramouli
|
||||
* Vinay Deshpande
|
||||
|
||||
Please report bugs to the XGBoost issues list: https://github.com/dmlc/xgboost/issues. For general questions please visit our user form: https://discuss.xgboost.ai/.
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user