[backport] Handle missing values in dataframe with category dtype. (#7331) (#7413)

* Handle missing values in dataframe with category dtype. (#7331)

* Replace -1 in pandas initializer.
* Unify `IsValid` functor.
* Mimic pandas data handling in cuDF glue code.
* Check invalid categories.
* Fix DDM sketching.

* Fix pick error.
This commit is contained in:
Jiaming Yuan 2021-11-10 21:24:46 +08:00 committed by GitHub
parent 11f8b5cfcd
commit 14c56f05da
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
13 changed files with 308 additions and 110 deletions

View File

@ -386,7 +386,7 @@ class DataIter: # pylint: disable=too-many-instance-attributes
raise exc # pylint: disable=raising-bad-type
def __del__(self) -> None:
assert self._temporary_data is None, self._temporary_data
assert self._temporary_data is None
assert self._exception is None
def _reset_wrapper(self, this: None) -> None: # pylint: disable=unused-argument
@ -410,19 +410,19 @@ class DataIter: # pylint: disable=too-many-instance-attributes
feature_names: Optional[List[str]] = None,
feature_types: Optional[List[str]] = None,
**kwargs: Any,
):
) -> None:
from .data import dispatch_proxy_set_data
from .data import _proxy_transform
transformed, feature_names, feature_types = _proxy_transform(
new, cat_codes, feature_names, feature_types = _proxy_transform(
data,
feature_names,
feature_types,
self._enable_categorical,
)
# Stage the data, meta info are copied inside C++ MetaInfo.
self._temporary_data = transformed
dispatch_proxy_set_data(self.proxy, transformed, self._allow_host)
self._temporary_data = (new, cat_codes)
dispatch_proxy_set_data(self.proxy, new, cat_codes, self._allow_host)
self.proxy.set_info(
feature_names=feature_names,
feature_types=feature_types,
@ -1103,7 +1103,7 @@ class _ProxyDMatrix(DMatrix):
self.handle = ctypes.c_void_p()
_check_call(_LIB.XGProxyDMatrixCreate(ctypes.byref(self.handle)))
def _set_data_from_cuda_interface(self, data):
def _set_data_from_cuda_interface(self, data) -> None:
"""Set data from CUDA array interface."""
interface = data.__cuda_array_interface__
interface_str = bytes(json.dumps(interface, indent=2), "utf-8")
@ -1111,11 +1111,11 @@ class _ProxyDMatrix(DMatrix):
_LIB.XGProxyDMatrixSetDataCudaArrayInterface(self.handle, interface_str)
)
def _set_data_from_cuda_columnar(self, data):
def _set_data_from_cuda_columnar(self, data, cat_codes: list) -> None:
"""Set data from CUDA columnar format."""
from .data import _cudf_array_interfaces
_, interfaces_str = _cudf_array_interfaces(data)
interfaces_str = _cudf_array_interfaces(data, cat_codes)
_check_call(_LIB.XGProxyDMatrixSetDataCudaColumnar(self.handle, interfaces_str))
def _set_data_from_array(self, data: np.ndarray):
@ -1986,13 +1986,6 @@ class Booster(object):
preds = ctypes.POINTER(ctypes.c_float)()
# once caching is supported, we can pass id(data) as cache id.
try:
import pandas as pd
if isinstance(data, pd.DataFrame):
data = data.values
except ImportError:
pass
args = {
"type": 0,
"training": False,
@ -2027,7 +2020,20 @@ class Booster(object):
f"got {data.shape[1]}"
)
from .data import _is_pandas_df, _transform_pandas_df
from .data import _array_interface
if (
_is_pandas_df(data)
or lazy_isinstance(data, "cudf.core.dataframe", "DataFrame")
):
ft = self.feature_types
if ft is None:
enable_categorical = False
else:
enable_categorical = any(f == "c" for f in ft)
if _is_pandas_df(data):
data, _, _ = _transform_pandas_df(data, enable_categorical)
if isinstance(data, np.ndarray):
from .data import _ensure_np_dtype
data, _ = _ensure_np_dtype(data, data.dtype)
@ -2080,9 +2086,11 @@ class Booster(object):
)
return _prediction_output(shape, dims, preds, True)
if lazy_isinstance(data, "cudf.core.dataframe", "DataFrame"):
from .data import _cudf_array_interfaces
_, interfaces_str = _cudf_array_interfaces(data)
from .data import _cudf_array_interfaces, _transform_cudf_df
data, cat_codes, _, _ = _transform_cudf_df(
data, None, None, enable_categorical
)
interfaces_str = _cudf_array_interfaces(data, cat_codes)
_check_call(
_LIB.XGBoosterPredictFromCudaColumnar(
self.handle,

View File

@ -1,4 +1,4 @@
# pylint: disable=too-many-arguments, too-many-branches
# pylint: disable=too-many-arguments, too-many-branches, too-many-lines
# pylint: disable=too-many-return-statements, import-error
'''Data dispatching for DMatrix.'''
import ctypes
@ -12,7 +12,7 @@ import numpy as np
from .core import c_array, _LIB, _check_call, c_str
from .core import _cuda_array_interface
from .core import DataIter, _ProxyDMatrix, DMatrix
from .compat import lazy_isinstance
from .compat import lazy_isinstance, DataFrame
c_bst_ulong = ctypes.c_uint64 # pylint: disable=invalid-name
@ -217,36 +217,48 @@ _pandas_dtype_mapper = {
}
def _invalid_dataframe_dtype(data) -> None:
# pandas series has `dtypes` but it's just a single object
# cudf series doesn't have `dtypes`.
if hasattr(data, "dtypes") and hasattr(data.dtypes, "__iter__"):
bad_fields = [
str(data.columns[i])
for i, dtype in enumerate(data.dtypes)
if dtype.name not in _pandas_dtype_mapper
]
err = " Invalid columns:" + ", ".join(bad_fields)
else:
err = ""
msg = """DataFrame.dtypes for data must be int, float, bool or category. When
categorical type is supplied, DMatrix parameter `enable_categorical` must
be set to `True`.""" + err
raise ValueError(msg)
def _transform_pandas_df(
data,
data: DataFrame,
enable_categorical: bool,
feature_names: Optional[List[str]] = None,
feature_types: Optional[List[str]] = None,
meta=None,
meta_type=None,
):
meta: Optional[str] = None,
meta_type: Optional[str] = None,
) -> Tuple[np.ndarray, Optional[List[str]], Optional[List[str]]]:
import pandas as pd
from pandas.api.types import is_sparse, is_categorical_dtype
if not all(dtype.name in _pandas_dtype_mapper or is_sparse(dtype) or
(is_categorical_dtype(dtype) and enable_categorical)
for dtype in data.dtypes):
bad_fields = [
str(data.columns[i]) for i, dtype in enumerate(data.dtypes)
if dtype.name not in _pandas_dtype_mapper
]
msg = """DataFrame.dtypes for data must be int, float, bool or category. When
categorical type is supplied, DMatrix parameter `enable_categorical` must
be set to `True`."""
raise ValueError(msg + ', '.join(bad_fields))
if not all(
dtype.name in _pandas_dtype_mapper
or is_sparse(dtype)
or (is_categorical_dtype(dtype) and enable_categorical)
for dtype in data.dtypes
):
_invalid_dataframe_dtype(data)
# handle feature names
if feature_names is None and meta is None:
if isinstance(data.columns, pd.MultiIndex):
feature_names = [
' '.join([str(x) for x in i]) for i in data.columns
]
feature_names = [" ".join([str(x) for x in i]) for i in data.columns]
elif isinstance(data.columns, (pd.Int64Index, pd.RangeIndex)):
feature_names = list(map(str, data.columns))
else:
@ -263,21 +275,24 @@ def _transform_pandas_df(
else:
feature_types.append(_pandas_dtype_mapper[dtype.name])
# handle categorical codes.
# handle category codes.
transformed = pd.DataFrame()
if enable_categorical:
for i, dtype in enumerate(data.dtypes):
if is_categorical_dtype(dtype):
transformed[data.columns[i]] = data[data.columns[i]].cat.codes
# pandas uses -1 as default missing value for categorical data
transformed[data.columns[i]] = (
data[data.columns[i]]
.cat.codes.astype(np.float32)
.replace(-1.0, np.NaN)
)
else:
transformed[data.columns[i]] = data[data.columns[i]]
else:
transformed = data
if meta and len(data.columns) > 1:
raise ValueError(
f"DataFrame for {meta} cannot have multiple columns"
)
raise ValueError(f"DataFrame for {meta} cannot have multiple columns")
dtype = meta_type if meta_type else np.float32
arr = transformed.values
@ -287,7 +302,7 @@ def _transform_pandas_df(
def _from_pandas_df(
data,
data: DataFrame,
enable_categorical: bool,
missing,
nthread,
@ -300,6 +315,7 @@ def _from_pandas_df(
feature_types)
def _is_pandas_series(data):
try:
import pandas as pd
@ -318,13 +334,26 @@ def _is_modin_series(data):
def _from_pandas_series(
data,
missing,
nthread,
missing: float,
nthread: int,
enable_categorical: bool,
feature_names: Optional[List[str]],
feature_types: Optional[List[str]],
):
from pandas.api.types import is_categorical_dtype
if (data.dtype.name not in _pandas_dtype_mapper) and not (
is_categorical_dtype(data.dtype) and enable_categorical
):
_invalid_dataframe_dtype(data)
if enable_categorical and is_categorical_dtype(data.dtype):
data = data.cat.codes
return _from_numpy_array(
data.values.astype("float"), missing, nthread, feature_names, feature_types
data.values.reshape(data.shape[0], 1).astype("float"),
missing,
nthread,
feature_names,
feature_types,
)
@ -428,7 +457,7 @@ def _is_cudf_df(data):
return hasattr(cudf, 'DataFrame') and isinstance(data, cudf.DataFrame)
def _cudf_array_interfaces(data) -> Tuple[list, bytes]:
def _cudf_array_interfaces(data, cat_codes: list) -> bytes:
"""Extract CuDF __cuda_array_interface__. This is special as it returns a new list of
data and a list of array interfaces. The data is list of categorical codes that
caller can safely ignore, but have to keep their reference alive until usage of array
@ -440,23 +469,27 @@ def _cudf_array_interfaces(data) -> Tuple[list, bytes]:
except ImportError:
from cudf.utils.dtypes import is_categorical_dtype
cat_codes = []
interfaces = []
if _is_cudf_ser(data):
interfaces.append(data.__cuda_array_interface__)
if is_categorical_dtype(data.dtype):
interface = cat_codes[0].__cuda_array_interface__
else:
interface = data.__cuda_array_interface__
if "mask" in interface:
interface["mask"] = interface["mask"].__cuda_array_interface__
interfaces.append(interface)
else:
for col in data:
for i, col in enumerate(data):
if is_categorical_dtype(data[col].dtype):
codes = data[col].cat.codes
codes = cat_codes[i]
interface = codes.__cuda_array_interface__
cat_codes.append(codes)
else:
interface = data[col].__cuda_array_interface__
if "mask" in interface:
interface["mask"] = interface["mask"].__cuda_array_interface__
interfaces.append(interface)
interfaces_str = bytes(json.dumps(interfaces, indent=2), "utf-8")
return cat_codes, interfaces_str
return interfaces_str
def _transform_cudf_df(
@ -470,25 +503,57 @@ def _transform_cudf_df(
except ImportError:
from cudf.utils.dtypes import is_categorical_dtype
if _is_cudf_ser(data):
dtypes = [data.dtype]
else:
dtypes = data.dtypes
if not all(
dtype.name in _pandas_dtype_mapper
or (is_categorical_dtype(dtype) and enable_categorical)
for dtype in dtypes
):
_invalid_dataframe_dtype(data)
# handle feature names
if feature_names is None:
if _is_cudf_ser(data):
feature_names = [data.name]
elif lazy_isinstance(data.columns, "cudf.core.multiindex", "MultiIndex"):
feature_names = [" ".join([str(x) for x in i]) for i in data.columns]
elif (
lazy_isinstance(data.columns, "cudf.core.index", "RangeIndex")
or lazy_isinstance(data.columns, "cudf.core.index", "Int64Index")
# Unique to cuDF, no equivalence in pandas 1.3.3
or lazy_isinstance(data.columns, "cudf.core.index", "Int32Index")
):
feature_names = list(map(str, data.columns))
else:
feature_names = data.columns.format()
# handle feature types
if feature_types is None:
feature_types = []
if _is_cudf_ser(data):
dtypes = [data.dtype]
else:
dtypes = data.dtypes
for dtype in dtypes:
if is_categorical_dtype(dtype) and enable_categorical:
feature_types.append(CAT_T)
else:
feature_types.append(_pandas_dtype_mapper[dtype.name])
return data, feature_names, feature_types
# handle categorical data
cat_codes = []
if _is_cudf_ser(data):
# unlike pandas, cuDF uses NA for missing data.
if is_categorical_dtype(data.dtype) and enable_categorical:
codes = data.cat.codes
cat_codes.append(codes)
else:
for col in data:
if is_categorical_dtype(data[col].dtype) and enable_categorical:
codes = data[col].cat.codes
cat_codes.append(codes)
return data, cat_codes, feature_names, feature_types
def _from_cudf_df(
@ -499,10 +564,10 @@ def _from_cudf_df(
feature_types: Optional[List[str]],
enable_categorical: bool,
) -> Tuple[ctypes.c_void_p, Any, Any]:
data, feature_names, feature_types = _transform_cudf_df(
data, cat_codes, feature_names, feature_types = _transform_cudf_df(
data, feature_names, feature_types, enable_categorical
)
_, interfaces_str = _cudf_array_interfaces(data)
interfaces_str = _cudf_array_interfaces(data, cat_codes)
handle = ctypes.c_void_p()
config = bytes(json.dumps({"missing": missing, "nthread": nthread}), "utf-8")
_check_call(
@ -707,8 +772,9 @@ def dispatch_data_backend(
return _from_pandas_df(data, enable_categorical, missing, threads,
feature_names, feature_types)
if _is_pandas_series(data):
return _from_pandas_series(data, missing, threads, feature_names,
feature_types)
return _from_pandas_series(
data, missing, threads, enable_categorical, feature_names, feature_types
)
if _is_cudf_df(data) or _is_cudf_ser(data):
return _from_cudf_df(
data, missing, threads, feature_names, feature_types, enable_categorical
@ -732,8 +798,9 @@ def dispatch_data_backend(
return _from_pandas_df(data, enable_categorical, missing, threads,
feature_names, feature_types)
if _is_modin_series(data):
return _from_pandas_series(data, missing, threads, feature_names,
feature_types)
return _from_pandas_series(
data, missing, threads, enable_categorical, feature_names, feature_types
)
if _has_array_protocol(data):
array = np.asarray(data)
return _from_numpy_array(array, missing, threads, feature_names, feature_types)
@ -866,8 +933,7 @@ def dispatch_meta_backend(matrix: DMatrix, data, name: str, dtype: str = None):
_meta_from_dt(data, name, dtype, handle)
return
if _is_modin_df(data):
data, _, _ = _transform_pandas_df(
data, False, meta=name, meta_type=dtype)
data, _, _ = _transform_pandas_df(data, False, meta=name, meta_type=dtype)
_meta_from_numpy(data, name, dtype, handle)
return
if _is_modin_series(data):
@ -917,30 +983,38 @@ def _proxy_transform(
)
if _is_cupy_array(data):
data = _transform_cupy_array(data)
return data, feature_names, feature_types
return data, None, feature_names, feature_types
if _is_dlpack(data):
return _transform_dlpack(data), feature_names, feature_types
return _transform_dlpack(data), None, feature_names, feature_types
if _is_numpy_array(data):
return data, feature_names, feature_types
return data, None, feature_names, feature_types
if _is_scipy_csr(data):
return data, feature_names, feature_types
return data, None, feature_names, feature_types
if _is_pandas_df(data):
arr, feature_names, feature_types = _transform_pandas_df(
data, enable_categorical, feature_names, feature_types
)
return arr, feature_names, feature_types
return arr, None, feature_names, feature_types
raise TypeError("Value type is not supported for data iterator:" + str(type(data)))
def dispatch_proxy_set_data(proxy: _ProxyDMatrix, data: Any, allow_host: bool) -> None:
def dispatch_proxy_set_data(
proxy: _ProxyDMatrix,
data: Any,
cat_codes: Optional[list],
allow_host: bool,
) -> None:
"""Dispatch for DeviceQuantileDMatrix."""
if not _is_cudf_ser(data) and not _is_pandas_series(data):
_check_data_shape(data)
if _is_cudf_df(data):
proxy._set_data_from_cuda_columnar(data) # pylint: disable=W0212
# pylint: disable=W0212
proxy._set_data_from_cuda_columnar(data, cat_codes)
return
if _is_cudf_ser(data):
proxy._set_data_from_cuda_columnar(data) # pylint: disable=W0212
# pylint: disable=W0212
proxy._set_data_from_cuda_columnar(data, cat_codes)
return
if _is_cupy_array(data):
proxy._set_data_from_cuda_interface(data) # pylint: disable=W0212

View File

@ -1,5 +1,5 @@
/*!
* Copyright 2020 by XGBoost Contributors
* Copyright 2020-2021 by XGBoost Contributors
* \file categorical.h
*/
#ifndef XGBOOST_COMMON_CATEGORICAL_H_
@ -42,6 +42,11 @@ inline XGBOOST_DEVICE bool Decision(common::Span<uint32_t const> cats, bst_cat_t
return !s_cats.Check(cat);
}
inline void CheckCat(bst_cat_t cat) {
CHECK_GE(cat, 0) << "Invalid categorical value detected. Categorical value "
"should be non-negative.";
}
struct IsCatOp {
XGBOOST_DEVICE bool operator()(FeatureType ft) {
return ft == FeatureType::kCategorical;

View File

@ -133,6 +133,7 @@ void RemoveDuplicatedCategories(
int32_t device, MetaInfo const &info, Span<bst_row_t> d_cuts_ptr,
dh::device_vector<Entry> *p_sorted_entries,
dh::caching_device_vector<size_t> *p_column_sizes_scan) {
info.feature_types.SetDevice(device);
auto d_feature_types = info.feature_types.ConstDeviceSpan();
CHECK(!d_feature_types.empty());
auto &column_sizes_scan = *p_column_sizes_scan;

View File

@ -124,6 +124,11 @@ void MakeEntriesFromAdapter(AdapterBatch const& batch, BatchIter batch_iter,
void SortByWeight(dh::device_vector<float>* weights,
dh::device_vector<Entry>* sorted_entries);
void RemoveDuplicatedCategories(
int32_t device, MetaInfo const &info, Span<bst_row_t> d_cuts_ptr,
dh::device_vector<Entry> *p_sorted_entries,
dh::caching_device_vector<size_t> *p_column_sizes_scan);
} // namespace detail
// Compute sketch on DMatrix.
@ -132,9 +137,10 @@ HistogramCuts DeviceSketch(int device, DMatrix* dmat, int max_bins,
size_t sketch_batch_num_elements = 0);
template <typename AdapterBatch>
void ProcessSlidingWindow(AdapterBatch const& batch, int device, size_t columns,
size_t begin, size_t end, float missing,
SketchContainer* sketch_container, int num_cuts) {
void ProcessSlidingWindow(AdapterBatch const &batch, MetaInfo const &info,
int device, size_t columns, size_t begin, size_t end,
float missing, SketchContainer *sketch_container,
int num_cuts) {
// Copy current subset of valid elements into temporary storage and sort
dh::device_vector<Entry> sorted_entries;
dh::caching_device_vector<size_t> column_sizes_scan;
@ -142,6 +148,7 @@ void ProcessSlidingWindow(AdapterBatch const& batch, int device, size_t columns,
thrust::make_counting_iterator(0llu),
[=] __device__(size_t idx) { return batch.GetElement(idx); });
HostDeviceVector<SketchContainer::OffsetT> cuts_ptr;
cuts_ptr.SetDevice(device);
detail::MakeEntriesFromAdapter(batch, batch_iter, {begin, end}, missing,
columns, num_cuts, device,
&cuts_ptr,
@ -151,8 +158,14 @@ void ProcessSlidingWindow(AdapterBatch const& batch, int device, size_t columns,
thrust::sort(thrust::cuda::par(alloc), sorted_entries.begin(),
sorted_entries.end(), detail::EntryCompareOp());
auto const& h_cuts_ptr = cuts_ptr.ConstHostVector();
if (sketch_container->HasCategorical()) {
auto d_cuts_ptr = cuts_ptr.DeviceSpan();
detail::RemoveDuplicatedCategories(device, info, d_cuts_ptr,
&sorted_entries, &column_sizes_scan);
}
auto d_cuts_ptr = cuts_ptr.DeviceSpan();
auto const &h_cuts_ptr = cuts_ptr.HostVector();
// Extract the cuts from all columns concurrently
sketch_container->Push(dh::ToSpan(sorted_entries),
dh::ToSpan(column_sizes_scan), d_cuts_ptr,
@ -222,6 +235,12 @@ void ProcessWeightedSlidingWindow(Batch batch, MetaInfo const& info,
detail::SortByWeight(&temp_weights, &sorted_entries);
if (sketch_container->HasCategorical()) {
auto d_cuts_ptr = cuts_ptr.DeviceSpan();
detail::RemoveDuplicatedCategories(device, info, d_cuts_ptr,
&sorted_entries, &column_sizes_scan);
}
auto const& h_cuts_ptr = cuts_ptr.ConstHostVector();
auto d_cuts_ptr = cuts_ptr.DeviceSpan();
@ -274,8 +293,8 @@ void AdapterDeviceSketch(Batch batch, int num_bins,
device, num_cuts_per_feature, false);
for (auto begin = 0ull; begin < batch.Size(); begin += sketch_batch_num_elements) {
size_t end = std::min(batch.Size(), size_t(begin + sketch_batch_num_elements));
ProcessSlidingWindow(batch, device, num_cols,
begin, end, missing, sketch_container, num_cuts_per_feature);
ProcessSlidingWindow(batch, info, device, num_cols, begin, end, missing,
sketch_container, num_cuts_per_feature);
}
}
}

View File

@ -21,6 +21,7 @@
#include "array_interface.h"
#include "../c_api/c_api_error.h"
#include "../common/math.h"
namespace xgboost {
namespace data {
@ -80,6 +81,24 @@ struct COOTuple {
float value{0};
};
struct IsValidFunctor {
float missing;
XGBOOST_DEVICE explicit IsValidFunctor(float missing) : missing(missing) {}
XGBOOST_DEVICE bool operator()(float value) const {
return !(common::CheckNAN(value) || value == missing);
}
XGBOOST_DEVICE bool operator()(const data::COOTuple& e) const {
return !(common::CheckNAN(e.value) || e.value == missing);
}
XGBOOST_DEVICE bool operator()(const Entry& e) const {
return !(common::CheckNAN(e.fvalue) || e.fvalue == missing);
}
};
namespace detail {
/**

View File

@ -987,18 +987,19 @@ uint64_t SparsePage::Push(const AdapterBatchT& batch, float missing, int nthread
// Second pass over batch, placing elements in correct position
auto is_valid = data::IsValidFunctor{missing};
#pragma omp parallel num_threads(nthread)
{
exec.Run([&]() {
int tid = omp_get_thread_num();
size_t begin = tid*thread_size;
size_t end = tid != (nthread-1) ? (tid+1)*thread_size : batch_size;
size_t begin = tid * thread_size;
size_t end = tid != (nthread - 1) ? (tid + 1) * thread_size : batch_size;
for (size_t i = begin; i < end; ++i) {
auto line = batch.GetLine(i);
for (auto j = 0ull; j < line.Size(); j++) {
auto element = line.GetElement(j);
const size_t key = (element.row_idx - base_rowid);
if (!common::CheckNAN(element.value) && element.value != missing) {
if (is_valid(element)) {
builder.Push(key, Entry(element.column_idx, element.value), tid);
}
}

View File

@ -15,29 +15,6 @@
namespace xgboost {
namespace data {
struct IsValidFunctor : public thrust::unary_function<Entry, bool> {
float missing;
XGBOOST_DEVICE explicit IsValidFunctor(float missing) : missing(missing) {}
__device__ bool operator()(float value) const {
return !(common::CheckNAN(value) || value == missing);
}
__device__ bool operator()(const data::COOTuple& e) const {
if (common::CheckNAN(e.value) || e.value == missing) {
return false;
}
return true;
}
__device__ bool operator()(const Entry& e) const {
if (common::CheckNAN(e.fvalue) || e.fvalue == missing) {
return false;
}
return true;
}
};
class CudfAdapterBatch : public detail::NoMetaInfo {
friend class CudfAdapter;

View File

@ -152,6 +152,7 @@ void IterativeDeviceDMatrix::Initialize(DataIterHandle iter_handle, float missin
if (batches == 1) {
this->info_ = std::move(proxy->Info());
this->info_.num_nonzero_ = nnz;
CHECK_EQ(proxy->Info().labels_.Size(), 0);
}

View File

@ -585,6 +585,7 @@ struct GPUHistMakerDevice {
CHECK_LT(candidate.split.fvalue, std::numeric_limits<bst_cat_t>::max())
<< "Categorical feature value too large.";
auto cat = common::AsCat(candidate.split.fvalue);
common::CheckCat(cat);
std::vector<uint32_t> split_cats(LBitField32::ComputeStorageSize(std::max(cat+1, 1)), 0);
LBitField32 cats_bits(split_cats);
cats_bits.Set(cat);

View File

@ -392,6 +392,52 @@ TEST(HistUtil, AdapterSketchSlidingWindowWeightedMemory) {
EXPECT_GE(dh::GlobalMemoryLogger().PeakMemory(), bytes_required);
}
void TestCategoricalSketchAdapter(size_t n, size_t num_categories,
int32_t num_bins, bool weighted) {
auto h_x = GenerateRandomCategoricalSingleColumn(n, num_categories);
thrust::device_vector<float> x(h_x);
auto adapter = AdapterFromData(x, n, 1);
MetaInfo info;
info.num_row_ = n;
info.num_col_ = 1;
info.feature_types.HostVector().push_back(FeatureType::kCategorical);
if (weighted) {
std::vector<float> weights(n, 0);
SimpleLCG lcg;
SimpleRealUniformDistribution<float> dist(0, 1);
for (auto& v : weights) {
v = dist(&lcg);
}
info.weights_.HostVector() = weights;
}
ASSERT_EQ(info.feature_types.Size(), 1);
SketchContainer container(info.feature_types, num_bins, 1, n, 0);
AdapterDeviceSketch(adapter.Value(), num_bins, info,
std::numeric_limits<float>::quiet_NaN(), &container);
HistogramCuts cuts;
container.MakeCuts(&cuts);
thrust::sort(x.begin(), x.end());
auto n_uniques = thrust::unique(x.begin(), x.end()) - x.begin();
ASSERT_NE(n_uniques, x.size());
ASSERT_EQ(cuts.TotalBins(), n_uniques);
ASSERT_EQ(n_uniques, num_categories);
auto& values = cuts.cut_values_.HostVector();
ASSERT_TRUE(std::is_sorted(values.cbegin(), values.cend()));
auto is_unique = (std::unique(values.begin(), values.end()) - values.begin()) == n_uniques;
ASSERT_TRUE(is_unique);
x.resize(n_uniques);
h_x.resize(n_uniques);
thrust::copy(x.begin(), x.end(), h_x.begin());
for (decltype(n_uniques) i = 0; i < n_uniques; ++i) {
ASSERT_EQ(h_x[i], values[i]);
}
}
TEST(HistUtil, AdapterDeviceSketchCategorical) {
int categorical_sizes[] = {2, 6, 8, 12};
int num_bins = 256;
@ -404,6 +450,8 @@ TEST(HistUtil, AdapterDeviceSketchCategorical) {
auto adapter = AdapterFromData(x_device, n, 1);
ValidateBatchedCuts(adapter, num_bins, adapter.NumColumns(),
adapter.NumRows(), dmat.get());
TestCategoricalSketchAdapter(n, num_categories, num_bins, true);
TestCategoricalSketchAdapter(n, num_categories, num_bins, false);
}
}
}

View File

@ -186,6 +186,37 @@ Arrow specification.'''
assert len(Xy.feature_types) == X.shape[1]
assert all(t == "c" for t in Xy.feature_types)
# test missing value
X = cudf.DataFrame({"f0": ["a", "b", np.NaN]})
X["f0"] = X["f0"].astype("category")
df, cat_codes, _, _ = xgb.data._transform_cudf_df(
X, None, None, enable_categorical=True
)
for col in cat_codes:
assert col.has_nulls
y = [0, 1, 2]
with pytest.raises(ValueError):
xgb.DMatrix(X, y)
Xy = xgb.DMatrix(X, y, enable_categorical=True)
assert Xy.num_row() == 3
assert Xy.num_col() == 1
with pytest.raises(ValueError):
xgb.DeviceQuantileDMatrix(X, y)
Xy = xgb.DeviceQuantileDMatrix(X, y, enable_categorical=True)
assert Xy.num_row() == 3
assert Xy.num_col() == 1
X = X["f0"]
with pytest.raises(ValueError):
xgb.DMatrix(X, y)
Xy = xgb.DMatrix(X, y, enable_categorical=True)
assert Xy.num_row() == 3
assert Xy.num_col() == 1
@pytest.mark.skipif(**tm.no_cudf())
@pytest.mark.skipif(**tm.no_cupy())

View File

@ -138,9 +138,22 @@ class TestPandas:
X, enable_categorical=True
)
assert np.issubdtype(transformed[:, 0].dtype, np.integer)
assert transformed[:, 0].min() == 0
# test missing value
X = pd.DataFrame({"f0": ["a", "b", np.NaN]})
X["f0"] = X["f0"].astype("category")
arr, _, _ = xgb.data._transform_pandas_df(X, enable_categorical=True)
assert not np.any(arr == -1.0)
X = X["f0"]
with pytest.raises(ValueError):
xgb.DMatrix(X, y)
Xy = xgb.DMatrix(X, y, enable_categorical=True)
assert Xy.num_row() == 3
assert Xy.num_col() == 1
def test_pandas_sparse(self):
import pandas as pd
rows = 100