diff --git a/README.md b/README.md index 6a05ce0c4..cfb561bf4 100644 --- a/README.md +++ b/README.md @@ -74,6 +74,18 @@ Build export CXX = g++-4.9 ``` Then run ```bash build.sh``` normally. + + - For users who want to use [High Performance Computing for Mac OS X](http://hpc.sourceforge.net/), download the GCC 4.9 binary tar ball and follow the installation guidance to install them under `/usr/local`. Then edit [Makefile](Makefile/) by replacing: + ``` + export CC = gcc + export CXX = g++ + ``` + with + ``` + export CC = /usr/local/bin/gcc + export CXX = /usr/local/bin/g++ + ``` + Then run ```bash build.sh``` normally. This solution is given by [Phil Culliton](https://www.kaggle.com/c/otto-group-product-classification-challenge/forums/t/12947/achieve-0-50776-on-the-leaderboard-in-a-minute-with-xgboost/68308#post68308). Version ======= diff --git a/demo/kaggle-otto/benchmark.R b/demo/kaggle-otto/benchmark.R deleted file mode 100644 index ffe7a8794..000000000 --- a/demo/kaggle-otto/benchmark.R +++ /dev/null @@ -1,43 +0,0 @@ -require(xgboost) -require(methods) - -train = read.csv('data/train.csv',header=TRUE,stringsAsFactors = F) -test = read.csv('data/test.csv',header=TRUE,stringsAsFactors = F) -train = train[,-1] -test = test[,-1] - -y = train[,ncol(train)] -y = gsub('Class_','',y) -y = as.integer(y)-1 #xgboost take features in [0,numOfClass) - -x = rbind(train[,-ncol(train)],test) -x = as.matrix(x) -x = matrix(as.numeric(x),nrow(x),ncol(x)) -trind = 1:length(y) -teind = (nrow(train)+1):nrow(x) - -# Set necessary parameter -param <- list("objective" = "multi:softprob", - "eval_metric" = "mlogloss", - "num_class" = 9, - "nthread" = 8) - -# Run Cross Valication -cv.nround = 50 -bst.cv = xgb.cv(param=param, data = x[trind,], label = y, - nfold = 3, nrounds=cv.nround) - -# Train the model -nround = 50 -bst = xgboost(param=param, data = x[trind,], label = y, nrounds=nround) - -# Make prediction -pred = predict(bst,x[teind,]) -pred = matrix(pred,9,length(pred)/9) -pred = t(pred) - -# Output submission -pred = format(pred, digits=2,scientific=F) # shrink the size of submission -pred = data.frame(1:nrow(pred),pred) -names(pred) = c('id', paste0('Class_',1:9)) -write.csv(pred,file='submission.csv', quote=FALSE,row.names=FALSE) diff --git a/demo/kaggle-otto/readme.md b/demo/kaggle-otto/readme.md deleted file mode 100644 index af95dd47a..000000000 --- a/demo/kaggle-otto/readme.md +++ /dev/null @@ -1,24 +0,0 @@ -Benckmark for Otto Group Competition -========= - -This is a folder containing the benchmark for the [Otto Group Competition on Kaggle](http://www.kaggle.com/c/otto-group-product-classification-challenge). - -## Getting started - -1. Put `train.csv` and `test.csv` under the `data` folder -2. Run the script - -The parameter `nthread` controls the number of cores to run on, please set it to suit your machine. - -## R-package - -To install the R-package of xgboost, please run - -```r -devtools::install_github('tqchen/xgboost',subdir='R-package') -``` - -Windows users may need to install [RTools](http://cran.r-project.org/bin/windows/Rtools/) first. - - -