Mark flaky tests as XFAIL (#6299)

* Temporarily skip TestGPUUpdaters::test_categorical

* Temporarily skip test_boost_from_prediction[approx]
This commit is contained in:
Philip Hyunsu Cho 2020-10-28 11:50:57 -07:00 committed by GitHub
parent c4da967b5c
commit 143b278267
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 4 additions and 0 deletions

View File

@ -86,6 +86,7 @@ class TestGPUUpdaters:
@settings(deadline=None) @settings(deadline=None)
@pytest.mark.skipif(**tm.no_pandas()) @pytest.mark.skipif(**tm.no_pandas())
def test_categorical(self, rows, cols, rounds, cats): def test_categorical(self, rows, cols, rounds, cats):
pytest.xfail(reason='TestGPUUpdaters::test_categorical is flaky')
self.run_categorical_basic(rows, cols, rounds, cats) self.run_categorical_basic(rows, cols, rounds, cats)
def test_categorical_32_cat(self): def test_categorical_32_cat(self):

View File

@ -142,6 +142,9 @@ def test_dask_predict_shape_infer():
@pytest.mark.parametrize("tree_method", ["hist", "approx"]) @pytest.mark.parametrize("tree_method", ["hist", "approx"])
def test_boost_from_prediction(tree_method): def test_boost_from_prediction(tree_method):
if tree_method == 'approx':
pytest.xfail(reason='test_boost_from_prediction[approx] is flaky')
from sklearn.datasets import load_breast_cancer from sklearn.datasets import load_breast_cancer
X, y = load_breast_cancer(return_X_y=True) X, y = load_breast_cancer(return_X_y=True)