Support primitive types of pyarrow-backed pandas dataframe. (#8653)

Categorical data (dictionary) is not supported at the moment.
This commit is contained in:
Jiaming Yuan 2023-01-30 17:53:29 +08:00 committed by GitHub
parent 3760cede0f
commit 1325ba9251
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 189 additions and 19 deletions

View File

@ -251,7 +251,25 @@ pandas_nullable_mapper = {
"boolean": "i",
}
pandas_pyarrow_mapper = {
"int8[pyarrow]": "i",
"int16[pyarrow]": "i",
"int32[pyarrow]": "i",
"int64[pyarrow]": "i",
"uint8[pyarrow]": "i",
"uint16[pyarrow]": "i",
"uint32[pyarrow]": "i",
"uint64[pyarrow]": "i",
"float[pyarrow]": "float",
"float32[pyarrow]": "float",
"double[pyarrow]": "float",
"float64[pyarrow]": "float",
"bool[pyarrow]": "i",
}
_pandas_dtype_mapper.update(pandas_nullable_mapper)
_pandas_dtype_mapper.update(pandas_pyarrow_mapper)
_ENABLE_CAT_ERR = (
"When categorical type is supplied, The experimental DMatrix parameter"
@ -277,13 +295,14 @@ def _invalid_dataframe_dtype(data: DataType) -> None:
raise ValueError(msg)
def _pandas_feature_info(
def pandas_feature_info(
data: DataFrame,
meta: Optional[str],
feature_names: Optional[FeatureNames],
feature_types: Optional[FeatureTypes],
enable_categorical: bool,
) -> Tuple[Optional[FeatureNames], Optional[FeatureTypes]]:
"""Handle feature info for pandas dataframe."""
import pandas as pd
from pandas.api.types import is_categorical_dtype, is_sparse
@ -302,7 +321,9 @@ def _pandas_feature_info(
for dtype in data.dtypes:
if is_sparse(dtype):
feature_types.append(_pandas_dtype_mapper[dtype.subtype.name])
elif is_categorical_dtype(dtype) and enable_categorical:
elif (
is_categorical_dtype(dtype) or is_pa_ext_categorical_dtype(dtype)
) and enable_categorical:
feature_types.append(CAT_T)
else:
feature_types.append(_pandas_dtype_mapper[dtype.name])
@ -310,7 +331,7 @@ def _pandas_feature_info(
def is_nullable_dtype(dtype: PandasDType) -> bool:
"""Wether dtype is a pandas nullable type."""
"""Whether dtype is a pandas nullable type."""
from pandas.api.types import (
is_bool_dtype,
is_categorical_dtype,
@ -319,38 +340,63 @@ def is_nullable_dtype(dtype: PandasDType) -> bool:
)
is_int = is_integer_dtype(dtype) and dtype.name in pandas_nullable_mapper
# np.bool has alias `bool`, while pd.BooleanDtype has `bzoolean`.
# np.bool has alias `bool`, while pd.BooleanDtype has `boolean`.
is_bool = is_bool_dtype(dtype) and dtype.name == "boolean"
is_float = is_float_dtype(dtype) and dtype.name in pandas_nullable_mapper
return is_int or is_bool or is_float or is_categorical_dtype(dtype)
def is_pa_ext_dtype(dtype: Any) -> bool:
"""Return whether dtype is a pyarrow extension type for pandas"""
return hasattr(dtype, "pyarrow_dtype")
def is_pa_ext_categorical_dtype(dtype: Any) -> bool:
"""Check whether dtype is a dictionary type."""
return lazy_isinstance(
getattr(dtype, "pyarrow_dtype", None), "pyarrow.lib", "DictionaryType"
)
def pandas_cat_null(data: DataFrame) -> DataFrame:
"""Handle categorical dtype and nullable extension types from pandas."""
import pandas as pd
from pandas.api.types import is_categorical_dtype
# handle category codes and nullable.
cat_columns = []
nul_columns = []
# avoid an unnecessary conversion if possible
for col, dtype in zip(data.columns, data.dtypes):
if is_categorical_dtype(dtype):
cat_columns.append(col)
# avoid an unnecessary conversion if possible
elif is_pa_ext_categorical_dtype(dtype):
raise ValueError(
"pyarrow dictionary type is not supported. Use pandas category instead."
)
elif is_nullable_dtype(dtype):
nul_columns.append(col)
if cat_columns or nul_columns:
# Avoid transformation due to: PerformanceWarning: DataFrame is highly
# fragmented
transformed = data.copy()
transformed = data.copy(deep=False)
else:
transformed = data
def cat_codes(ser: pd.Series) -> pd.Series:
if is_categorical_dtype(ser.dtype):
return ser.cat.codes
assert is_pa_ext_categorical_dtype(ser.dtype)
# Not yet supported, the index is not ordered for some reason. Alternately:
# `combine_chunks().to_pandas().cat.codes`. The result is the same.
return ser.array.__arrow_array__().combine_chunks().dictionary_encode().indices
if cat_columns:
# DF doesn't have the cat attribute, as a result, we use apply here
transformed[cat_columns] = (
transformed[cat_columns]
.apply(lambda x: x.cat.codes)
.apply(cat_codes)
.astype(np.float32)
.replace(-1.0, np.NaN)
)
@ -364,6 +410,29 @@ def pandas_cat_null(data: DataFrame) -> DataFrame:
return transformed
def pandas_ext_num_types(data: DataFrame) -> DataFrame:
"""Experimental suppport for handling pyarrow extension numeric types."""
import pandas as pd
import pyarrow as pa
for col, dtype in zip(data.columns, data.dtypes):
if not is_pa_ext_dtype(dtype):
continue
# No copy, callstack:
# pandas.core.internals.managers.SingleBlockManager.array_values()
# pandas.core.internals.blocks.EABackedBlock.values
d_array: pd.arrays.ArrowExtensionArray = data[col].array
# no copy in __arrow_array__
# ArrowExtensionArray._data is a chunked array
aa: pa.ChunkedArray = d_array.__arrow_array__()
chunk: pa.Array = aa.combine_chunks()
# Alternately, we can use chunk.buffers(), which returns a list of buffers and
# we need to concatenate them ourselves.
arr = chunk.__array__()
data[col] = arr
return data
def _transform_pandas_df(
data: DataFrame,
enable_categorical: bool,
@ -374,19 +443,27 @@ def _transform_pandas_df(
) -> Tuple[np.ndarray, Optional[FeatureNames], Optional[FeatureTypes]]:
from pandas.api.types import is_categorical_dtype, is_sparse
if not all(
pyarrow_extension = False
for dtype in data.dtypes:
if not (
(dtype.name in _pandas_dtype_mapper)
or is_sparse(dtype)
or (is_categorical_dtype(dtype) and enable_categorical)
for dtype in data.dtypes
or is_pa_ext_dtype(dtype)
):
_invalid_dataframe_dtype(data)
if is_pa_ext_dtype(dtype):
pyarrow_extension = True
feature_names, feature_types = _pandas_feature_info(
feature_names, feature_types = pandas_feature_info(
data, meta, feature_names, feature_types, enable_categorical
)
transformed = pandas_cat_null(data)
if pyarrow_extension:
if transformed is data:
transformed = data.copy(deep=False)
transformed = pandas_ext_num_types(transformed)
if meta and len(data.columns) > 1 and meta not in _matrix_meta:
raise ValueError(f"DataFrame for {meta} cannot have multiple columns")
@ -1192,7 +1269,10 @@ def _proxy_transform(
enable_categorical: bool,
) -> Tuple[
Union[bool, ctypes.c_void_p, np.ndarray],
Optional[list], Optional[FeatureNames], Optional[FeatureTypes]]:
Optional[list],
Optional[FeatureNames],
Optional[FeatureTypes],
]:
if _is_cudf_df(data) or _is_cudf_ser(data):
return _transform_cudf_df(
data, feature_names, feature_types, enable_categorical
@ -1212,6 +1292,7 @@ def _proxy_transform(
return data, None, feature_names, feature_types
if _is_pandas_series(data):
import pandas as pd
data = pd.DataFrame(data)
if _is_pandas_df(data):
arr, feature_names, feature_types = _transform_pandas_df(

View File

@ -2,6 +2,7 @@
from typing import Any, Generator, Tuple, Union
import numpy as np
from xgboost.data import pandas_pyarrow_mapper
def np_dtypes(
@ -124,3 +125,56 @@ def pd_dtypes() -> Generator:
orig = pd.DataFrame(data, dtype=np.bool_ if Null is None else pd.BooleanDtype())
df = pd.DataFrame(data, dtype=pd.BooleanDtype())
yield orig, df
def pd_arrow_dtypes() -> Generator:
"""Pandas DataFrame with pyarrow backed type."""
import pandas as pd
import pyarrow as pa # pylint: disable=import-error
# Integer
dtypes = pandas_pyarrow_mapper
Null: Union[float, None, Any] = np.nan
orig = pd.DataFrame(
{"f0": [1, 2, Null, 3], "f1": [4, 3, Null, 1]}, dtype=np.float32
)
# Create a dictionary-backed dataframe, enable this when the roundtrip is
# implemented in pandas/pyarrow
#
# category = pd.ArrowDtype(pa.dictionary(pa.int32(), pa.int32(), ordered=True))
# df = pd.DataFrame({"f0": [0, 2, Null, 3], "f1": [4, 3, Null, 1]}, dtype=category)
# Error:
# >>> df.astype("category")
# Function 'dictionary_encode' has no kernel matching input types
# (array[dictionary<values=int32, indices=int32, ordered=0>])
# Error:
# pd_cat_df = pd.DataFrame(
# {"f0": [0, 2, Null, 3], "f1": [4, 3, Null, 1]},
# dtype="category"
# )
# pa_catcodes = (
# df["f1"].array.__arrow_array__().combine_chunks().to_pandas().cat.codes
# )
# pd_catcodes = pd_cat_df["f1"].cat.codes
# assert pd_catcodes.equals(pa_catcodes)
for Null in (None, pd.NA):
for dtype in dtypes:
if dtype.startswith("float16") or dtype.startswith("bool"):
continue
df = pd.DataFrame(
{"f0": [1, 2, Null, 3], "f1": [4, 3, Null, 1]}, dtype=dtype
)
yield orig, df
orig = pd.DataFrame(
{"f0": [True, False, pd.NA, True], "f1": [False, True, pd.NA, True]},
dtype=pd.BooleanDtype(),
)
df = pd.DataFrame(
{"f0": [True, False, pd.NA, True], "f1": [False, True, pd.NA, True]},
dtype=pd.ArrowDtype(pa.bool_()),
)
yield orig, df

View File

@ -1,7 +1,9 @@
from typing import Type
import numpy as np
import pytest
from test_dmatrix import set_base_margin_info
from xgboost.testing.data import pd_dtypes
from xgboost.testing.data import pd_arrow_dtypes, pd_dtypes
import xgboost as xgb
from xgboost import testing as tm
@ -305,9 +307,17 @@ class TestPandas:
# series
enable_categorical = is_categorical(df.dtype)
m_orig = DMatrixT(orig, enable_categorical=enable_categorical)
f0_orig = orig[orig.columns[0]] if isinstance(orig, pd.DataFrame) else orig
f0 = df[df.columns[0]] if isinstance(df, pd.DataFrame) else df
y_orig = f0_orig.astype(pd.Float32Dtype()).fillna(0)
y = f0.astype(pd.Float32Dtype()).fillna(0)
m_orig = DMatrixT(orig, enable_categorical=enable_categorical, label=y_orig)
# extension types
m_etype = DMatrixT(df, enable_categorical=enable_categorical)
copy = df.copy()
m_etype = DMatrixT(df, enable_categorical=enable_categorical, label=y)
# no mutation
assert df.equals(copy)
# different from pd.BooleanDtype(), None is converted to False with bool
if hasattr(orig.dtypes, "__iter__") and any(
dtype == "bool" for dtype in orig.dtypes
@ -316,7 +326,32 @@ class TestPandas:
else:
assert tm.predictor_equal(m_orig, m_etype)
np.testing.assert_allclose(m_orig.get_label(), m_etype.get_label())
np.testing.assert_allclose(m_etype.get_label(), y.values.astype(np.float32))
if isinstance(df, pd.DataFrame):
f0 = df["f0"]
with pytest.raises(ValueError, match="Label contains NaN"):
xgb.DMatrix(df, f0, enable_categorical=enable_categorical)
@pytest.mark.skipif(**tm.no_arrow())
@pytest.mark.parametrize("DMatrixT", [xgb.DMatrix, xgb.QuantileDMatrix])
def test_pyarrow_type(self, DMatrixT: Type[xgb.DMatrix]) -> None:
for orig, df in pd_arrow_dtypes():
f0_orig: pd.Series = orig["f0"]
f0 = df["f0"]
if f0.dtype.name.startswith("bool"):
y = None
y_orig = None
else:
y_orig = f0_orig.fillna(0, inplace=False)
y = f0.fillna(0, inplace=False)
m_orig = DMatrixT(orig, enable_categorical=True, label=y_orig)
m_etype = DMatrixT(df, enable_categorical=True, label=y)
assert tm.predictor_equal(m_orig, m_etype)
if y is not None:
np.testing.assert_allclose(m_orig.get_label(), m_etype.get_label())
np.testing.assert_allclose(m_etype.get_label(), y.values)