test case for XGBoostSpark

This commit is contained in:
CodingCat 2016-03-05 19:41:26 -05:00
parent f0647ec76d
commit 130ca7b00c
3 changed files with 104 additions and 26 deletions

View File

@ -19,14 +19,14 @@ package ml.dmlc.xgboost4j.scala.spark
import scala.collection.immutable.HashMap
import com.typesafe.config.Config
import org.apache.spark.SparkContext
import org.apache.spark.{TaskContext, SparkContext}
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.rdd.RDD
import ml.dmlc.xgboost4j.java.{DMatrix => JDMatrix}
import ml.dmlc.xgboost4j.java.{DMatrix => JDMatrix, Rabit, RabitTracker}
import ml.dmlc.xgboost4j.scala.{XGBoost => SXGBoost, _}
object XGBoost {
object XGBoost extends Serializable {
implicit def convertBoosterToXGBoostModel(booster: Booster): XGBoostModel = {
new XGBoostModel(booster)
@ -38,28 +38,43 @@ object XGBoost {
numWorkers: Int, round: Int, obj: ObjectiveTrait, eval: EvalTrait): RDD[Booster] = {
import DataUtils._
val sc = trainingData.sparkContext
val dataUtilsBroadcast = sc.broadcast(DataUtils)
val tracker = new RabitTracker(numWorkers)
if (tracker.start()) {
trainingData.repartition(numWorkers).mapPartitions {
trainingSamples =>
Rabit.init(new java.util.HashMap[String, String]() {
put("DMLC_TASK_ID", TaskContext.getPartitionId().toString)
})
val dMatrix = new DMatrix(new JDMatrix(trainingSamples, null))
Iterator(SXGBoost.train(xgBoostConfMap, dMatrix, round,
watches = new HashMap[String, DMatrix], obj, eval))
val booster = SXGBoost.train(xgBoostConfMap, dMatrix, round,
watches = new HashMap[String, DMatrix], obj, eval)
Rabit.shutdown()
Iterator(booster)
}.cache()
} else {
null
}
}
def train(config: Config, trainingData: RDD[LabeledPoint], obj: ObjectiveTrait = null,
eval: EvalTrait = null): XGBoostModel = {
eval: EvalTrait = null): Option[XGBoostModel] = {
import DataUtils._
val numWorkers = config.getInt("numWorkers")
val round = config.getInt("round")
val sc = trainingData.sparkContext
val tracker = new RabitTracker(numWorkers)
if (tracker.start()) {
// TODO: build configuration map from config
val xgBoostConfigMap = new HashMap[String, AnyRef]()
val boosters = buildDistributedBoosters(trainingData, xgBoostConfigMap, numWorkers, round,
obj, eval)
// force the job
sc.runJob(boosters, (boosters: Iterator[Booster]) => boosters)
tracker.waitFor()
// TODO: how to choose best model
boosters.first()
Some(boosters.first())
} else {
None
}
}
}

View File

@ -33,4 +33,8 @@ class XGBoostModel(booster: Booster) extends Serializable {
Iterator(broadcastBooster.value.predict(dMatrix))
}
}
def predict(testSet: DMatrix): Array[Array[Float]] = {
booster.predict(testSet)
}
}

View File

@ -20,7 +20,11 @@ import java.io.File
import scala.collection.mutable.ListBuffer
import scala.io.Source
import scala.tools.reflect.Eval
import ml.dmlc.xgboost4j.java.{DMatrix => JDMatrix, XGBoostError}
import ml.dmlc.xgboost4j.scala.{DMatrix, EvalTrait}
import org.apache.commons.logging.LogFactory
import org.apache.spark.mllib.linalg.DenseVector
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.rdd.RDD
@ -32,6 +36,48 @@ class XGBoostSuite extends FunSuite with BeforeAndAfterAll {
private var sc: SparkContext = null
private val numWorker = 4
private class EvalError extends EvalTrait {
val logger = LogFactory.getLog(classOf[EvalError])
private[xgboost4j] var evalMetric: String = "custom_error"
/**
* get evaluate metric
*
* @return evalMetric
*/
override def getMetric: String = evalMetric
/**
* evaluate with predicts and data
*
* @param predicts predictions as array
* @param dmat data matrix to evaluate
* @return result of the metric
*/
override def eval(predicts: Array[Array[Float]], dmat: DMatrix): Float = {
var error: Float = 0f
var labels: Array[Float] = null
try {
labels = dmat.getLabel
} catch {
case ex: XGBoostError =>
logger.error(ex)
return -1f
}
val nrow: Int = predicts.length
for (i <- 0 until nrow) {
if (labels(i) == 0.0 && predicts(i)(0) > 0) {
error += 1
} else if (labels(i) == 1.0 && predicts(i)(0) <= 0) {
error += 1
}
}
error / labels.length
}
}
override def beforeAll(): Unit = {
// build SparkContext
val sparkConf = new SparkConf().setMaster("local[*]").setAppName("XGBoostSuite")
@ -56,28 +102,41 @@ class XGBoostSuite extends FunSuite with BeforeAndAfterAll {
LabeledPoint(label, new DenseVector(denseFeature))
}
private def buildRDD(filePath: String): RDD[LabeledPoint] = {
private def readFile(filePath: String): List[LabeledPoint] = {
val file = Source.fromFile(new File(filePath))
val sampleList = new ListBuffer[LabeledPoint]
for (sample <- file.getLines()) {
sampleList += fromSVMStringToLabeledPoint(sample)
}
sampleList.toList
}
private def buildRDD(filePath: String): RDD[LabeledPoint] = {
val sampleList = readFile(filePath)
sc.parallelize(sampleList, numWorker)
}
private def buildTrainingAndTestRDD(): (RDD[LabeledPoint], RDD[LabeledPoint]) = {
private def buildTrainingRDD(): RDD[LabeledPoint] = {
val trainRDD = buildRDD(getClass.getResource("/agaricus.txt.train").getFile)
val testRDD = buildRDD(getClass.getResource("/agaricus.txt.test").getFile)
(trainRDD, testRDD)
trainRDD
}
test("build RDD containing boosters") {
val (trainingRDD, testRDD) = buildTrainingAndTestRDD()
val trainingRDD = buildTrainingRDD()
val testSet = readFile(getClass.getResource("/agaricus.txt.test").getFile).iterator
import DataUtils._
val testSetDMatrix = new DMatrix(new JDMatrix(testSet, null))
val boosterRDD = XGBoost.buildDistributedBoosters(
trainingRDD,
Map[String, AnyRef](),
numWorker, 4, null, null)
List("eta" -> "1", "max_depth" -> "2", "silent" -> "0",
"objective" -> "binary:logistic").toMap,
numWorker, 2, null, null)
val boosterCount = boosterRDD.count()
assert(boosterCount === numWorker)
val boosters = boosterRDD.collect()
for (booster <- boosters) {
val predicts = booster.predict(testSetDMatrix, true)
assert(new EvalError().eval(predicts, testSetDMatrix) < 0.1)
}
}
}