[backport] [CI] Skip pyspark sparse tests. (#8675) (#8678)

This commit is contained in:
Jiaming Yuan 2023-01-14 06:40:17 +08:00 committed by GitHub
parent e803d06d8c
commit 10bb0a74ef
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 15 additions and 2 deletions

View File

@ -36,7 +36,8 @@ dependencies:
- cloudpickle
- shap
- modin
# TODO: Replace it with pyspark>=3.4 once 3.4 released.
# - https://ml-team-public-read.s3.us-west-2.amazonaws.com/pyspark-3.4.0.dev0.tar.gz
- pyspark>=3.3.1
- pip:
- datatable
# TODO: Replace it with pyspark>=3.4 once 3.4 released.
- https://ml-team-public-read.s3.us-west-2.amazonaws.com/pyspark-3.4.0.dev0.tar.gz

View File

@ -41,6 +41,16 @@ logging.getLogger("py4j").setLevel(logging.INFO)
pytestmark = testing.timeout(60)
def no_sparse_unwrap():
try:
from pyspark.sql.functions import unwrap_udt
except ImportError:
return {"reason": "PySpark<3.4", "condition": True}
return {"reason": "PySpark<3.4", "condition": False}
class XgboostLocalTest(SparkTestCase):
def setUp(self):
logging.getLogger().setLevel("INFO")
@ -985,6 +995,7 @@ class XgboostLocalTest(SparkTestCase):
model = classifier.fit(self.cls_df_train)
model.transform(self.cls_df_test).collect()
@pytest.mark.skipif(**no_sparse_unwrap())
def test_regressor_with_sparse_optim(self):
regressor = SparkXGBRegressor(missing=0.0)
model = regressor.fit(self.reg_df_sparse_train)
@ -1001,6 +1012,7 @@ class XgboostLocalTest(SparkTestCase):
for row1, row2 in zip(pred_result, pred_result2):
self.assertTrue(np.isclose(row1.prediction, row2.prediction, atol=1e-3))
@pytest.mark.skipif(**no_sparse_unwrap())
def test_classifier_with_sparse_optim(self):
cls = SparkXGBClassifier(missing=0.0)
model = cls.fit(self.cls_df_sparse_train)