Fix doc for apply method. (#6796)
This commit is contained in:
parent
138fe8516a
commit
10ae0f9511
@ -786,7 +786,7 @@ class XGBModel(XGBModelBase):
|
||||
Parameters
|
||||
----------
|
||||
X : array_like
|
||||
Data to predict with
|
||||
Data to predict with.
|
||||
output_margin : bool
|
||||
Whether to output the raw untransformed margin value.
|
||||
ntree_limit : int
|
||||
@ -798,8 +798,8 @@ class XGBModel(XGBModelBase):
|
||||
Margin added to prediction.
|
||||
iteration_range :
|
||||
Specifies which layer of trees are used in prediction. For example, if a
|
||||
random forest is trained with 100 rounds. Specifying `iteration_range=(10,
|
||||
20)`, then only the forests built during [10, 20) (half open set) rounds are
|
||||
random forest is trained with 100 rounds. Specifying ``iteration_range=(10,
|
||||
20)``, then only the forests built during [10, 20) (half open set) rounds are
|
||||
used in this prediction.
|
||||
|
||||
.. versionadded:: 1.4.0
|
||||
@ -849,8 +849,11 @@ class XGBModel(XGBModelBase):
|
||||
X : array_like, shape=[n_samples, n_features]
|
||||
Input features matrix.
|
||||
|
||||
ntree_limit : int
|
||||
Limit number of trees in the prediction; defaults to 0 (use all trees).
|
||||
iteration_range :
|
||||
See :py:meth:`xgboost.XGBRegressor.predict`.
|
||||
|
||||
ntree_limit :
|
||||
Deprecated, use ``iteration_range`` instead.
|
||||
|
||||
Returns
|
||||
-------
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user