Use double precision in metric calculation. (#7364)
This commit is contained in:
parent
239dbb3c0a
commit
0f7a9b42f1
@ -58,9 +58,8 @@ class Metric : public Configurable {
|
||||
* the average statistics across all the node,
|
||||
* this is only supported by some metrics
|
||||
*/
|
||||
virtual bst_float Eval(const HostDeviceVector<bst_float>& preds,
|
||||
const MetaInfo& info,
|
||||
bool distributed) = 0;
|
||||
virtual double Eval(const HostDeviceVector<bst_float> &preds,
|
||||
const MetaInfo &info, bool distributed) = 0;
|
||||
/*! \return name of metric */
|
||||
virtual const char* Name() const = 0;
|
||||
/*! \brief virtual destructor */
|
||||
|
||||
@ -1110,6 +1110,7 @@ class LearnerImpl : public LearnerIO {
|
||||
this->Configure();
|
||||
|
||||
std::ostringstream os;
|
||||
os.precision(std::numeric_limits<double>::max_digits10);
|
||||
os << '[' << iter << ']' << std::setiosflags(std::ios::fixed);
|
||||
if (metrics_.size() == 0 && tparam_.disable_default_eval_metric <= 0) {
|
||||
auto warn_default_eval_metric = [](const std::string& objective, const std::string& before,
|
||||
|
||||
@ -30,7 +30,7 @@ namespace metric {
|
||||
* handle the normalization.
|
||||
*/
|
||||
template <typename Fn>
|
||||
std::tuple<float, float, float>
|
||||
std::tuple<double, double, double>
|
||||
BinaryAUC(common::Span<float const> predts, common::Span<float const> labels,
|
||||
OptionalWeights weights,
|
||||
std::vector<size_t> const &sorted_idx, Fn &&area_fn) {
|
||||
@ -39,12 +39,12 @@ BinaryAUC(common::Span<float const> predts, common::Span<float const> labels,
|
||||
auto p_predts = predts.data();
|
||||
auto p_labels = labels.data();
|
||||
|
||||
float auc{0};
|
||||
double auc{0};
|
||||
|
||||
float label = p_labels[sorted_idx.front()];
|
||||
float w = weights[sorted_idx[0]];
|
||||
float fp = (1.0 - label) * w, tp = label * w;
|
||||
float tp_prev = 0, fp_prev = 0;
|
||||
double fp = (1.0 - label) * w, tp = label * w;
|
||||
double tp_prev = 0, fp_prev = 0;
|
||||
// TODO(jiaming): We can parallize this if we have a parallel scan for CPU.
|
||||
for (size_t i = 1; i < sorted_idx.size(); ++i) {
|
||||
if (p_predts[sorted_idx[i]] != p_predts[sorted_idx[i - 1]]) {
|
||||
@ -77,17 +77,19 @@ BinaryAUC(common::Span<float const> predts, common::Span<float const> labels,
|
||||
* Machine Learning Models
|
||||
*/
|
||||
template <typename BinaryAUC>
|
||||
float MultiClassOVR(common::Span<float const> predts, MetaInfo const &info,
|
||||
size_t n_classes, int32_t n_threads,
|
||||
BinaryAUC &&binary_auc) {
|
||||
double MultiClassOVR(common::Span<float const> predts, MetaInfo const &info,
|
||||
size_t n_classes, int32_t n_threads,
|
||||
BinaryAUC &&binary_auc) {
|
||||
CHECK_NE(n_classes, 0);
|
||||
auto const &labels = info.labels_.ConstHostVector();
|
||||
|
||||
std::vector<float> results(n_classes * 3, 0);
|
||||
auto s_results = common::Span<float>(results);
|
||||
std::vector<double> results(n_classes * 3, 0);
|
||||
auto s_results = common::Span<double>(results);
|
||||
|
||||
auto local_area = s_results.subspan(0, n_classes);
|
||||
auto tp = s_results.subspan(n_classes, n_classes);
|
||||
auto auc = s_results.subspan(2 * n_classes, n_classes);
|
||||
|
||||
auto weights = OptionalWeights{info.weights_.ConstHostSpan()};
|
||||
|
||||
if (!info.labels_.Empty()) {
|
||||
@ -98,7 +100,7 @@ float MultiClassOVR(common::Span<float const> predts, MetaInfo const &info,
|
||||
proba[i] = predts[i * n_classes + c];
|
||||
response[i] = labels[i] == c ? 1.0f : 0.0;
|
||||
}
|
||||
float fp;
|
||||
double fp;
|
||||
std::tie(fp, tp[c], auc[c]) = binary_auc(proba, response, weights);
|
||||
local_area[c] = fp * tp[c];
|
||||
});
|
||||
@ -107,8 +109,8 @@ float MultiClassOVR(common::Span<float const> predts, MetaInfo const &info,
|
||||
// we have 2 averages going in here, first is among workers, second is among
|
||||
// classes. allreduce sums up fp/tp auc for each class.
|
||||
rabit::Allreduce<rabit::op::Sum>(results.data(), results.size());
|
||||
float auc_sum{0};
|
||||
float tp_sum{0};
|
||||
double auc_sum{0};
|
||||
double tp_sum{0};
|
||||
for (size_t c = 0; c < n_classes; ++c) {
|
||||
if (local_area[c] != 0) {
|
||||
// normalize and weight it by prevalence. After allreduce, `local_area`
|
||||
@ -117,21 +119,21 @@ float MultiClassOVR(common::Span<float const> predts, MetaInfo const &info,
|
||||
auc_sum += auc[c] / local_area[c] * tp[c];
|
||||
tp_sum += tp[c];
|
||||
} else {
|
||||
auc_sum = std::numeric_limits<float>::quiet_NaN();
|
||||
auc_sum = std::numeric_limits<double>::quiet_NaN();
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (tp_sum == 0 || std::isnan(auc_sum)) {
|
||||
auc_sum = std::numeric_limits<float>::quiet_NaN();
|
||||
auc_sum = std::numeric_limits<double>::quiet_NaN();
|
||||
} else {
|
||||
auc_sum /= tp_sum;
|
||||
}
|
||||
return auc_sum;
|
||||
}
|
||||
|
||||
std::tuple<float, float, float> BinaryROCAUC(common::Span<float const> predts,
|
||||
common::Span<float const> labels,
|
||||
OptionalWeights weights) {
|
||||
std::tuple<double, double, double>
|
||||
BinaryROCAUC(common::Span<float const> predts, common::Span<float const> labels,
|
||||
OptionalWeights weights) {
|
||||
auto const sorted_idx = common::ArgSort<size_t>(predts, std::greater<>{});
|
||||
return BinaryAUC(predts, labels, weights, sorted_idx, TrapezoidArea);
|
||||
}
|
||||
@ -139,14 +141,14 @@ std::tuple<float, float, float> BinaryROCAUC(common::Span<float const> predts,
|
||||
/**
|
||||
* Calculate AUC for 1 ranking group;
|
||||
*/
|
||||
float GroupRankingROC(common::Span<float const> predts,
|
||||
common::Span<float const> labels, float w) {
|
||||
double GroupRankingROC(common::Span<float const> predts,
|
||||
common::Span<float const> labels, float w) {
|
||||
// on ranking, we just count all pairs.
|
||||
float auc{0};
|
||||
double auc{0};
|
||||
auto const sorted_idx = common::ArgSort<size_t>(labels, std::greater<>{});
|
||||
w = common::Sqr(w);
|
||||
|
||||
float sum_w = 0.0f;
|
||||
double sum_w = 0.0f;
|
||||
for (size_t i = 0; i < labels.size(); ++i) {
|
||||
for (size_t j = i + 1; j < labels.size(); ++j) {
|
||||
auto predt = predts[sorted_idx[i]] - predts[sorted_idx[j]];
|
||||
@ -173,11 +175,11 @@ float GroupRankingROC(common::Span<float const> predts,
|
||||
*
|
||||
* https://doi.org/10.1371/journal.pone.0092209
|
||||
*/
|
||||
std::tuple<float, float, float> BinaryPRAUC(common::Span<float const> predts,
|
||||
common::Span<float const> labels,
|
||||
OptionalWeights weights) {
|
||||
std::tuple<double, double, double> BinaryPRAUC(common::Span<float const> predts,
|
||||
common::Span<float const> labels,
|
||||
OptionalWeights weights) {
|
||||
auto const sorted_idx = common::ArgSort<size_t>(predts, std::greater<>{});
|
||||
float total_pos{0}, total_neg{0};
|
||||
double total_pos{0}, total_neg{0};
|
||||
for (size_t i = 0; i < labels.size(); ++i) {
|
||||
auto w = weights[i];
|
||||
total_pos += w * labels[i];
|
||||
@ -186,22 +188,22 @@ std::tuple<float, float, float> BinaryPRAUC(common::Span<float const> predts,
|
||||
if (total_pos <= 0 || total_neg <= 0) {
|
||||
return {1.0f, 1.0f, std::numeric_limits<float>::quiet_NaN()};
|
||||
}
|
||||
auto fn = [total_pos](float fp_prev, float fp, float tp_prev, float tp) {
|
||||
auto fn = [total_pos](double fp_prev, double fp, double tp_prev, double tp) {
|
||||
return detail::CalcDeltaPRAUC(fp_prev, fp, tp_prev, tp, total_pos);
|
||||
};
|
||||
|
||||
float tp{0}, fp{0}, auc{0};
|
||||
double tp{0}, fp{0}, auc{0};
|
||||
std::tie(fp, tp, auc) = BinaryAUC(predts, labels, weights, sorted_idx, fn);
|
||||
return std::make_tuple(1.0, 1.0, auc);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Cast LTR problem to binary classification problem by comparing pairs.
|
||||
*/
|
||||
template <bool is_roc>
|
||||
std::pair<float, uint32_t> RankingAUC(std::vector<float> const &predts,
|
||||
MetaInfo const &info, int32_t n_threads) {
|
||||
std::pair<double, uint32_t> RankingAUC(std::vector<float> const &predts,
|
||||
MetaInfo const &info,
|
||||
int32_t n_threads) {
|
||||
CHECK_GE(info.group_ptr_.size(), 2);
|
||||
uint32_t n_groups = info.group_ptr_.size() - 1;
|
||||
auto s_predts = common::Span<float const>{predts};
|
||||
@ -217,7 +219,7 @@ std::pair<float, uint32_t> RankingAUC(std::vector<float> const &predts,
|
||||
float w = s_weights.empty() ? 1.0f : s_weights[g - 1];
|
||||
auto g_predts = s_predts.subspan(info.group_ptr_[g - 1], cnt);
|
||||
auto g_labels = s_labels.subspan(info.group_ptr_[g - 1], cnt);
|
||||
float auc;
|
||||
double auc;
|
||||
if (is_roc && g_labels.size() < 3) {
|
||||
// With 2 documents, there's only 1 comparison can be made. So either
|
||||
// TP or FP will be zero.
|
||||
@ -236,16 +238,16 @@ std::pair<float, uint32_t> RankingAUC(std::vector<float> const &predts,
|
||||
}
|
||||
auc_tloc[omp_get_thread_num()] += auc;
|
||||
});
|
||||
float sum_auc = std::accumulate(auc_tloc.cbegin(), auc_tloc.cend(), 0.0);
|
||||
double sum_auc = std::accumulate(auc_tloc.cbegin(), auc_tloc.cend(), 0.0);
|
||||
|
||||
return std::make_pair(sum_auc, n_groups - invalid_groups);
|
||||
}
|
||||
|
||||
template <typename Curve>
|
||||
class EvalAUC : public Metric {
|
||||
float Eval(const HostDeviceVector<bst_float> &preds, const MetaInfo &info,
|
||||
bool distributed) override {
|
||||
float auc {0};
|
||||
double Eval(const HostDeviceVector<bst_float> &preds, const MetaInfo &info,
|
||||
bool distributed) override {
|
||||
double auc {0};
|
||||
if (tparam_->gpu_id != GenericParameter::kCpuId) {
|
||||
preds.SetDevice(tparam_->gpu_id);
|
||||
info.labels_.SetDevice(tparam_->gpu_id);
|
||||
@ -256,7 +258,7 @@ class EvalAUC : public Metric {
|
||||
rabit::Allreduce<rabit::op::Max>(meta.data(), meta.size());
|
||||
if (meta[0] == 0) {
|
||||
// Empty across all workers, which is not supported.
|
||||
auc = std::numeric_limits<float>::quiet_NaN();
|
||||
auc = std::numeric_limits<double>::quiet_NaN();
|
||||
} else if (!info.group_ptr_.empty()) {
|
||||
/**
|
||||
* learning to rank
|
||||
@ -274,13 +276,13 @@ class EvalAUC : public Metric {
|
||||
InvalidGroupAUC();
|
||||
}
|
||||
|
||||
std::array<float, 2> results{auc, static_cast<float>(valid_groups)};
|
||||
std::array<double, 2> results{auc, static_cast<double>(valid_groups)};
|
||||
rabit::Allreduce<rabit::op::Sum>(results.data(), results.size());
|
||||
auc = results[0];
|
||||
valid_groups = static_cast<uint32_t>(results[1]);
|
||||
|
||||
if (valid_groups <= 0) {
|
||||
auc = std::numeric_limits<float>::quiet_NaN();
|
||||
auc = std::numeric_limits<double>::quiet_NaN();
|
||||
} else {
|
||||
auc /= valid_groups;
|
||||
CHECK_LE(auc, 1) << "Total AUC across groups: " << auc * valid_groups
|
||||
@ -297,18 +299,18 @@ class EvalAUC : public Metric {
|
||||
/**
|
||||
* binary classification
|
||||
*/
|
||||
float fp{0}, tp{0};
|
||||
double fp{0}, tp{0};
|
||||
if (!(preds.Empty() || info.labels_.Empty())) {
|
||||
std::tie(fp, tp, auc) =
|
||||
static_cast<Curve *>(this)->EvalBinary(preds, info);
|
||||
}
|
||||
float local_area = fp * tp;
|
||||
std::array<float, 2> result{auc, local_area};
|
||||
double local_area = fp * tp;
|
||||
std::array<double, 2> result{auc, local_area};
|
||||
rabit::Allreduce<rabit::op::Sum>(result.data(), result.size());
|
||||
std::tie(auc, local_area) = common::UnpackArr(std::move(result));
|
||||
if (local_area <= 0) {
|
||||
// the dataset across all workers have only positive or negative sample
|
||||
auc = std::numeric_limits<float>::quiet_NaN();
|
||||
auc = std::numeric_limits<double>::quiet_NaN();
|
||||
} else {
|
||||
CHECK_LE(auc, local_area);
|
||||
// normalization
|
||||
@ -326,9 +328,9 @@ class EvalROCAUC : public EvalAUC<EvalROCAUC> {
|
||||
std::shared_ptr<DeviceAUCCache> d_cache_;
|
||||
|
||||
public:
|
||||
std::pair<float, uint32_t> EvalRanking(HostDeviceVector<float> const &predts,
|
||||
MetaInfo const &info) {
|
||||
float auc{0};
|
||||
std::pair<double, uint32_t> EvalRanking(HostDeviceVector<float> const &predts,
|
||||
MetaInfo const &info) {
|
||||
double auc{0};
|
||||
uint32_t valid_groups = 0;
|
||||
auto n_threads = tparam_->Threads();
|
||||
if (tparam_->gpu_id == GenericParameter::kCpuId) {
|
||||
@ -341,9 +343,9 @@ class EvalROCAUC : public EvalAUC<EvalROCAUC> {
|
||||
return std::make_pair(auc, valid_groups);
|
||||
}
|
||||
|
||||
float EvalMultiClass(HostDeviceVector<float> const &predts,
|
||||
MetaInfo const &info, size_t n_classes) {
|
||||
float auc{0};
|
||||
double EvalMultiClass(HostDeviceVector<float> const &predts,
|
||||
MetaInfo const &info, size_t n_classes) {
|
||||
double auc{0};
|
||||
auto n_threads = tparam_->Threads();
|
||||
CHECK_NE(n_classes, 0);
|
||||
if (tparam_->gpu_id == GenericParameter::kCpuId) {
|
||||
@ -356,9 +358,9 @@ class EvalROCAUC : public EvalAUC<EvalROCAUC> {
|
||||
return auc;
|
||||
}
|
||||
|
||||
std::tuple<float, float, float>
|
||||
std::tuple<double, double, double>
|
||||
EvalBinary(HostDeviceVector<float> const &predts, MetaInfo const &info) {
|
||||
float fp, tp, auc;
|
||||
double fp, tp, auc;
|
||||
if (tparam_->gpu_id == GenericParameter::kCpuId) {
|
||||
std::tie(fp, tp, auc) =
|
||||
BinaryROCAUC(predts.ConstHostVector(), info.labels_.ConstHostVector(),
|
||||
@ -381,37 +383,37 @@ XGBOOST_REGISTER_METRIC(EvalAUC, "auc")
|
||||
.set_body([](const char*) { return new EvalROCAUC(); });
|
||||
|
||||
#if !defined(XGBOOST_USE_CUDA)
|
||||
std::tuple<float, float, float>
|
||||
std::tuple<double, double, double>
|
||||
GPUBinaryROCAUC(common::Span<float const> predts, MetaInfo const &info,
|
||||
int32_t device, std::shared_ptr<DeviceAUCCache> *p_cache) {
|
||||
common::AssertGPUSupport();
|
||||
return std::make_tuple(0.0f, 0.0f, 0.0f);
|
||||
return {};
|
||||
}
|
||||
|
||||
float GPUMultiClassROCAUC(common::Span<float const> predts,
|
||||
MetaInfo const &info, int32_t device,
|
||||
std::shared_ptr<DeviceAUCCache> *cache,
|
||||
size_t n_classes) {
|
||||
double GPUMultiClassROCAUC(common::Span<float const> predts,
|
||||
MetaInfo const &info, int32_t device,
|
||||
std::shared_ptr<DeviceAUCCache> *cache,
|
||||
size_t n_classes) {
|
||||
common::AssertGPUSupport();
|
||||
return 0;
|
||||
return 0.0;
|
||||
}
|
||||
|
||||
std::pair<float, uint32_t>
|
||||
std::pair<double, uint32_t>
|
||||
GPURankingAUC(common::Span<float const> predts, MetaInfo const &info,
|
||||
int32_t device, std::shared_ptr<DeviceAUCCache> *p_cache) {
|
||||
common::AssertGPUSupport();
|
||||
return std::make_pair(0.0f, 0u);
|
||||
return {};
|
||||
}
|
||||
struct DeviceAUCCache {};
|
||||
#endif // !defined(XGBOOST_USE_CUDA)
|
||||
|
||||
class EvalAUCPR : public EvalAUC<EvalAUCPR> {
|
||||
class EvalPRAUC : public EvalAUC<EvalPRAUC> {
|
||||
std::shared_ptr<DeviceAUCCache> d_cache_;
|
||||
|
||||
public:
|
||||
std::tuple<float, float, float>
|
||||
std::tuple<double, double, double>
|
||||
EvalBinary(HostDeviceVector<float> const &predts, MetaInfo const &info) {
|
||||
float pr, re, auc;
|
||||
double pr, re, auc;
|
||||
if (tparam_->gpu_id == GenericParameter::kCpuId) {
|
||||
std::tie(pr, re, auc) =
|
||||
BinaryPRAUC(predts.ConstHostSpan(), info.labels_.ConstHostSpan(),
|
||||
@ -423,7 +425,7 @@ class EvalAUCPR : public EvalAUC<EvalAUCPR> {
|
||||
return std::make_tuple(pr, re, auc);
|
||||
}
|
||||
|
||||
float EvalMultiClass(HostDeviceVector<float> const &predts,
|
||||
double EvalMultiClass(HostDeviceVector<float> const &predts,
|
||||
MetaInfo const &info, size_t n_classes) {
|
||||
if (tparam_->gpu_id == GenericParameter::kCpuId) {
|
||||
auto n_threads = this->tparam_->Threads();
|
||||
@ -435,9 +437,9 @@ class EvalAUCPR : public EvalAUC<EvalAUCPR> {
|
||||
}
|
||||
}
|
||||
|
||||
std::pair<float, uint32_t> EvalRanking(HostDeviceVector<float> const &predts,
|
||||
MetaInfo const &info) {
|
||||
float auc{0};
|
||||
std::pair<double, uint32_t> EvalRanking(HostDeviceVector<float> const &predts,
|
||||
MetaInfo const &info) {
|
||||
double auc{0};
|
||||
uint32_t valid_groups = 0;
|
||||
auto n_threads = tparam_->Threads();
|
||||
if (tparam_->gpu_id == GenericParameter::kCpuId) {
|
||||
@ -460,24 +462,25 @@ class EvalAUCPR : public EvalAUC<EvalAUCPR> {
|
||||
|
||||
XGBOOST_REGISTER_METRIC(AUCPR, "aucpr")
|
||||
.describe("Area under PR curve for both classification and rank.")
|
||||
.set_body([](char const *) { return new EvalAUCPR{}; });
|
||||
.set_body([](char const *) { return new EvalPRAUC{}; });
|
||||
|
||||
#if !defined(XGBOOST_USE_CUDA)
|
||||
std::tuple<float, float, float>
|
||||
std::tuple<double, double, double>
|
||||
GPUBinaryPRAUC(common::Span<float const> predts, MetaInfo const &info,
|
||||
int32_t device, std::shared_ptr<DeviceAUCCache> *p_cache) {
|
||||
common::AssertGPUSupport();
|
||||
return {};
|
||||
}
|
||||
|
||||
float GPUMultiClassPRAUC(common::Span<float const> predts, MetaInfo const &info,
|
||||
int32_t device, std::shared_ptr<DeviceAUCCache> *cache,
|
||||
size_t n_classes) {
|
||||
double GPUMultiClassPRAUC(common::Span<float const> predts,
|
||||
MetaInfo const &info, int32_t device,
|
||||
std::shared_ptr<DeviceAUCCache> *cache,
|
||||
size_t n_classes) {
|
||||
common::AssertGPUSupport();
|
||||
return {};
|
||||
}
|
||||
|
||||
std::pair<float, uint32_t>
|
||||
std::pair<double, uint32_t>
|
||||
GPURankingPRAUC(common::Span<float const> predts, MetaInfo const &info,
|
||||
int32_t device, std::shared_ptr<DeviceAUCCache> *cache) {
|
||||
common::AssertGPUSupport();
|
||||
|
||||
@ -22,7 +22,7 @@ namespace xgboost {
|
||||
namespace metric {
|
||||
namespace {
|
||||
// Pair of FP/TP
|
||||
using Pair = thrust::pair<float, float>;
|
||||
using Pair = thrust::pair<double, double>;
|
||||
|
||||
template <typename T, typename U, typename P = thrust::pair<T, U>>
|
||||
struct PairPlus : public thrust::binary_function<P, P, P> {
|
||||
@ -38,9 +38,9 @@ struct PairPlus : public thrust::binary_function<P, P, P> {
|
||||
struct DeviceAUCCache {
|
||||
// index sorted by prediction value
|
||||
dh::device_vector<size_t> sorted_idx;
|
||||
// track FP/TP for computation on trapesoid area
|
||||
// track FP/TP for computation on trapezoid area
|
||||
dh::device_vector<Pair> fptp;
|
||||
// track FP_PREV/TP_PREV for computation on trapesoid area
|
||||
// track FP_PREV/TP_PREV for computation on trapezoid area
|
||||
dh::device_vector<Pair> neg_pos;
|
||||
// index of unique prediction values.
|
||||
dh::device_vector<size_t> unique_idx;
|
||||
@ -79,13 +79,13 @@ void InitCacheOnce(common::Span<float const> predts, int32_t device,
|
||||
* The GPU implementation uses same calculation as CPU with a few more steps to distribute
|
||||
* work across threads:
|
||||
*
|
||||
* - Run scan to obtain TP/FP values, which are right coordinates of trapesoid.
|
||||
* - Run scan to obtain TP/FP values, which are right coordinates of trapezoid.
|
||||
* - Find distinct prediction values and get the corresponding FP_PREV/TP_PREV value,
|
||||
* which are left coordinates of trapesoids.
|
||||
* which are left coordinates of trapezoids.
|
||||
* - Reduce the scan array into 1 AUC value.
|
||||
*/
|
||||
template <typename Fn>
|
||||
std::tuple<float, float, float>
|
||||
std::tuple<double, double, double>
|
||||
GPUBinaryAUC(common::Span<float const> predts, MetaInfo const &info,
|
||||
int32_t device, common::Span<size_t const> d_sorted_idx,
|
||||
Fn area_fn, std::shared_ptr<DeviceAUCCache> cache) {
|
||||
@ -129,7 +129,7 @@ GPUBinaryAUC(common::Span<float const> predts, MetaInfo const &info,
|
||||
d_unique_idx = d_unique_idx.subspan(0, end_unique.second - dh::tbegin(d_unique_idx));
|
||||
|
||||
dh::InclusiveScan(dh::tbegin(d_fptp), dh::tbegin(d_fptp),
|
||||
PairPlus<float, float>{}, d_fptp.size());
|
||||
PairPlus<double, double>{}, d_fptp.size());
|
||||
|
||||
auto d_neg_pos = dh::ToSpan(cache->neg_pos);
|
||||
// scatter unique negaive/positive values
|
||||
@ -149,10 +149,10 @@ GPUBinaryAUC(common::Span<float const> predts, MetaInfo const &info,
|
||||
}
|
||||
});
|
||||
|
||||
auto in = dh::MakeTransformIterator<float>(
|
||||
auto in = dh::MakeTransformIterator<double>(
|
||||
thrust::make_counting_iterator(0), [=] XGBOOST_DEVICE(size_t i) {
|
||||
float fp, tp;
|
||||
float fp_prev, tp_prev;
|
||||
double fp, tp;
|
||||
double fp_prev, tp_prev;
|
||||
if (i == 0) {
|
||||
// handle the last element
|
||||
thrust::tie(fp, tp) = d_fptp.back();
|
||||
@ -165,11 +165,11 @@ GPUBinaryAUC(common::Span<float const> predts, MetaInfo const &info,
|
||||
});
|
||||
|
||||
Pair last = cache->fptp.back();
|
||||
float auc = thrust::reduce(thrust::cuda::par(alloc), in, in + d_unique_idx.size());
|
||||
double auc = thrust::reduce(thrust::cuda::par(alloc), in, in + d_unique_idx.size());
|
||||
return std::make_tuple(last.first, last.second, auc);
|
||||
}
|
||||
|
||||
std::tuple<float, float, float>
|
||||
std::tuple<double, double, double>
|
||||
GPUBinaryROCAUC(common::Span<float const> predts, MetaInfo const &info,
|
||||
int32_t device, std::shared_ptr<DeviceAUCCache> *p_cache) {
|
||||
auto &cache = *p_cache;
|
||||
@ -183,7 +183,7 @@ GPUBinaryROCAUC(common::Span<float const> predts, MetaInfo const &info,
|
||||
// Create lambda to avoid pass function pointer.
|
||||
return GPUBinaryAUC(
|
||||
predts, info, device, d_sorted_idx,
|
||||
[] XGBOOST_DEVICE(float x0, float x1, float y0, float y1) {
|
||||
[] XGBOOST_DEVICE(double x0, double x1, double y0, double y1) -> double {
|
||||
return TrapezoidArea(x0, x1, y0, y1);
|
||||
},
|
||||
cache);
|
||||
@ -209,33 +209,32 @@ XGBOOST_DEVICE size_t LastOf(size_t group, common::Span<Idx> indptr) {
|
||||
return indptr[group + 1] - 1;
|
||||
}
|
||||
|
||||
|
||||
float ScaleClasses(common::Span<float> results, common::Span<float> local_area,
|
||||
common::Span<float> fp, common::Span<float> tp,
|
||||
common::Span<float> auc, std::shared_ptr<DeviceAUCCache> cache,
|
||||
size_t n_classes) {
|
||||
double ScaleClasses(common::Span<double> results,
|
||||
common::Span<double> local_area, common::Span<double> fp,
|
||||
common::Span<double> tp, common::Span<double> auc,
|
||||
std::shared_ptr<DeviceAUCCache> cache, size_t n_classes) {
|
||||
dh::XGBDeviceAllocator<char> alloc;
|
||||
if (rabit::IsDistributed()) {
|
||||
CHECK_EQ(dh::CudaGetPointerDevice(results.data()), dh::CurrentDevice());
|
||||
cache->reducer->AllReduceSum(results.data(), results.data(), results.size());
|
||||
}
|
||||
auto reduce_in = dh::MakeTransformIterator<thrust::pair<float, float>>(
|
||||
auto reduce_in = dh::MakeTransformIterator<Pair>(
|
||||
thrust::make_counting_iterator(0), [=] XGBOOST_DEVICE(size_t i) {
|
||||
if (local_area[i] > 0) {
|
||||
return thrust::make_pair(auc[i] / local_area[i] * tp[i], tp[i]);
|
||||
}
|
||||
return thrust::make_pair(std::numeric_limits<float>::quiet_NaN(), 0.0f);
|
||||
return thrust::make_pair(std::numeric_limits<double>::quiet_NaN(), 0.0);
|
||||
});
|
||||
|
||||
float tp_sum;
|
||||
float auc_sum;
|
||||
double tp_sum;
|
||||
double auc_sum;
|
||||
thrust::tie(auc_sum, tp_sum) =
|
||||
thrust::reduce(thrust::cuda::par(alloc), reduce_in, reduce_in + n_classes,
|
||||
Pair{0.0f, 0.0f}, PairPlus<float, float>{});
|
||||
Pair{0.0, 0.0}, PairPlus<double, double>{});
|
||||
if (tp_sum != 0 && !std::isnan(auc_sum)) {
|
||||
auc_sum /= tp_sum;
|
||||
} else {
|
||||
return std::numeric_limits<float>::quiet_NaN();
|
||||
return std::numeric_limits<double>::quiet_NaN();
|
||||
}
|
||||
return auc_sum;
|
||||
}
|
||||
@ -246,7 +245,7 @@ float ScaleClasses(common::Span<float> results, common::Span<float> local_area,
|
||||
*/
|
||||
template <typename Fn>
|
||||
void SegmentedFPTP(common::Span<Pair> d_fptp, Fn segment_id) {
|
||||
using Triple = thrust::tuple<uint32_t, float, float>;
|
||||
using Triple = thrust::tuple<uint32_t, double, double>;
|
||||
// expand to tuple to include idx
|
||||
auto fptp_it_in = dh::MakeTransformIterator<Triple>(
|
||||
thrust::make_counting_iterator(0), [=] XGBOOST_DEVICE(size_t i) {
|
||||
@ -285,7 +284,7 @@ void SegmentedReduceAUC(common::Span<size_t const> d_unique_idx,
|
||||
std::shared_ptr<DeviceAUCCache> cache,
|
||||
Area area_fn,
|
||||
Seg segment_id,
|
||||
common::Span<float> d_auc) {
|
||||
common::Span<double> d_auc) {
|
||||
auto d_fptp = dh::ToSpan(cache->fptp);
|
||||
auto d_neg_pos = dh::ToSpan(cache->neg_pos);
|
||||
dh::XGBDeviceAllocator<char> alloc;
|
||||
@ -294,11 +293,11 @@ void SegmentedReduceAUC(common::Span<size_t const> d_unique_idx,
|
||||
size_t class_id = segment_id(d_unique_idx[i]);
|
||||
return class_id;
|
||||
});
|
||||
auto val_in = dh::MakeTransformIterator<float>(
|
||||
auto val_in = dh::MakeTransformIterator<double>(
|
||||
thrust::make_counting_iterator(0), [=] XGBOOST_DEVICE(size_t i) {
|
||||
size_t class_id = segment_id(d_unique_idx[i]);
|
||||
|
||||
float fp, tp, fp_prev, tp_prev;
|
||||
double fp, tp, fp_prev, tp_prev;
|
||||
if (i == d_unique_class_ptr[class_id]) {
|
||||
// first item is ignored, we use this thread to calculate the last item
|
||||
thrust::tie(fp, tp) = d_fptp[LastOf(class_id, d_class_ptr)];
|
||||
@ -308,7 +307,7 @@ void SegmentedReduceAUC(common::Span<size_t const> d_unique_idx,
|
||||
thrust::tie(fp, tp) = d_fptp[d_unique_idx[i] - 1];
|
||||
thrust::tie(fp_prev, tp_prev) = d_neg_pos[d_unique_idx[i - 1]];
|
||||
}
|
||||
float auc = area_fn(fp_prev, fp, tp_prev, tp, class_id);
|
||||
double auc = area_fn(fp_prev, fp, tp_prev, tp, class_id);
|
||||
return auc;
|
||||
});
|
||||
thrust::reduce_by_key(thrust::cuda::par(alloc), key_in,
|
||||
@ -321,10 +320,10 @@ void SegmentedReduceAUC(common::Span<size_t const> d_unique_idx,
|
||||
* up each class in all kernels.
|
||||
*/
|
||||
template <bool scale, typename Fn>
|
||||
float GPUMultiClassAUCOVR(common::Span<float const> predts,
|
||||
MetaInfo const &info, int32_t device,
|
||||
common::Span<uint32_t> d_class_ptr, size_t n_classes,
|
||||
std::shared_ptr<DeviceAUCCache> cache, Fn area_fn) {
|
||||
double GPUMultiClassAUCOVR(common::Span<float const> predts,
|
||||
MetaInfo const &info, int32_t device,
|
||||
common::Span<uint32_t> d_class_ptr, size_t n_classes,
|
||||
std::shared_ptr<DeviceAUCCache> cache, Fn area_fn) {
|
||||
dh::safe_cuda(cudaSetDevice(device));
|
||||
/**
|
||||
* Sorted idx
|
||||
@ -339,7 +338,7 @@ float GPUMultiClassAUCOVR(common::Span<float const> predts,
|
||||
size_t n_samples = labels.size();
|
||||
|
||||
if (n_samples == 0) {
|
||||
dh::TemporaryArray<float> resutls(n_classes * 4, 0.0f);
|
||||
dh::TemporaryArray<double> resutls(n_classes * 4, 0.0f);
|
||||
auto d_results = dh::ToSpan(resutls);
|
||||
dh::LaunchN(n_classes * 4,
|
||||
[=] XGBOOST_DEVICE(size_t i) { d_results[i] = 0.0f; });
|
||||
@ -353,7 +352,7 @@ float GPUMultiClassAUCOVR(common::Span<float const> predts,
|
||||
/**
|
||||
* Linear scan
|
||||
*/
|
||||
dh::caching_device_vector<float> d_auc(n_classes, 0);
|
||||
dh::caching_device_vector<double> d_auc(n_classes, 0);
|
||||
auto get_weight = OptionalWeights{weights};
|
||||
auto d_fptp = dh::ToSpan(cache->fptp);
|
||||
auto get_fp_tp = [=]XGBOOST_DEVICE(size_t i) {
|
||||
@ -432,7 +431,7 @@ float GPUMultiClassAUCOVR(common::Span<float const> predts,
|
||||
/**
|
||||
* Scale the classes with number of samples for each class.
|
||||
*/
|
||||
dh::TemporaryArray<float> resutls(n_classes * 4);
|
||||
dh::TemporaryArray<double> resutls(n_classes * 4);
|
||||
auto d_results = dh::ToSpan(resutls);
|
||||
auto local_area = d_results.subspan(0, n_classes);
|
||||
auto fp = d_results.subspan(n_classes, n_classes);
|
||||
@ -470,10 +469,10 @@ void MultiClassSortedIdx(common::Span<float const> predts,
|
||||
dh::SegmentedArgSort<false>(d_predts_t, d_class_ptr, d_sorted_idx);
|
||||
}
|
||||
|
||||
float GPUMultiClassROCAUC(common::Span<float const> predts,
|
||||
MetaInfo const &info, int32_t device,
|
||||
std::shared_ptr<DeviceAUCCache> *p_cache,
|
||||
size_t n_classes) {
|
||||
double GPUMultiClassROCAUC(common::Span<float const> predts,
|
||||
MetaInfo const &info, int32_t device,
|
||||
std::shared_ptr<DeviceAUCCache> *p_cache,
|
||||
size_t n_classes) {
|
||||
auto& cache = *p_cache;
|
||||
InitCacheOnce<true>(predts, device, p_cache);
|
||||
|
||||
@ -483,8 +482,8 @@ float GPUMultiClassROCAUC(common::Span<float const> predts,
|
||||
dh::TemporaryArray<uint32_t> class_ptr(n_classes + 1, 0);
|
||||
MultiClassSortedIdx(predts, dh::ToSpan(class_ptr), cache);
|
||||
|
||||
auto fn = [] XGBOOST_DEVICE(float fp_prev, float fp, float tp_prev, float tp,
|
||||
size_t /*class_id*/) {
|
||||
auto fn = [] XGBOOST_DEVICE(double fp_prev, double fp, double tp_prev,
|
||||
double tp, size_t /*class_id*/) {
|
||||
return TrapezoidArea(fp_prev, fp, tp_prev, tp);
|
||||
};
|
||||
return GPUMultiClassAUCOVR<true>(predts, info, device, dh::ToSpan(class_ptr),
|
||||
@ -494,13 +493,13 @@ float GPUMultiClassROCAUC(common::Span<float const> predts,
|
||||
namespace {
|
||||
struct RankScanItem {
|
||||
size_t idx;
|
||||
float predt;
|
||||
float w;
|
||||
double predt;
|
||||
double w;
|
||||
bst_group_t group_id;
|
||||
};
|
||||
} // anonymous namespace
|
||||
|
||||
std::pair<float, uint32_t>
|
||||
std::pair<double, uint32_t>
|
||||
GPURankingAUC(common::Span<float const> predts, MetaInfo const &info,
|
||||
int32_t device, std::shared_ptr<DeviceAUCCache> *p_cache) {
|
||||
auto& cache = *p_cache;
|
||||
@ -523,7 +522,7 @@ GPURankingAUC(common::Span<float const> predts, MetaInfo const &info,
|
||||
InvalidGroupAUC();
|
||||
}
|
||||
if (n_valid == 0) {
|
||||
return std::make_pair(0.0f, 0);
|
||||
return std::make_pair(0.0, 0);
|
||||
}
|
||||
|
||||
/**
|
||||
@ -583,7 +582,7 @@ GPURankingAUC(common::Span<float const> predts, MetaInfo const &info,
|
||||
return RankScanItem{idx, predt, w, query_group_idx};
|
||||
});
|
||||
|
||||
dh::TemporaryArray<float> d_auc(group_ptr.size() - 1);
|
||||
dh::TemporaryArray<double> d_auc(group_ptr.size() - 1);
|
||||
auto s_d_auc = dh::ToSpan(d_auc);
|
||||
auto out = thrust::make_transform_output_iterator(
|
||||
dh::TypedDiscard<RankScanItem>{},
|
||||
@ -615,12 +614,12 @@ GPURankingAUC(common::Span<float const> predts, MetaInfo const &info,
|
||||
/**
|
||||
* Scale the AUC with number of items in each group.
|
||||
*/
|
||||
float auc = thrust::reduce(thrust::cuda::par(alloc), dh::tbegin(s_d_auc),
|
||||
dh::tend(s_d_auc), 0.0f);
|
||||
double auc = thrust::reduce(thrust::cuda::par(alloc), dh::tbegin(s_d_auc),
|
||||
dh::tend(s_d_auc), 0.0);
|
||||
return std::make_pair(auc, n_valid);
|
||||
}
|
||||
|
||||
std::tuple<float, float, float>
|
||||
std::tuple<double, double, double>
|
||||
GPUBinaryPRAUC(common::Span<float const> predts, MetaInfo const &info,
|
||||
int32_t device, std::shared_ptr<DeviceAUCCache> *p_cache) {
|
||||
auto& cache = *p_cache;
|
||||
@ -635,32 +634,32 @@ GPUBinaryPRAUC(common::Span<float const> predts, MetaInfo const &info,
|
||||
auto labels = info.labels_.ConstDeviceSpan();
|
||||
auto d_weights = info.weights_.ConstDeviceSpan();
|
||||
auto get_weight = OptionalWeights{d_weights};
|
||||
auto it = dh::MakeTransformIterator<thrust::pair<float, float>>(
|
||||
auto it = dh::MakeTransformIterator<Pair>(
|
||||
thrust::make_counting_iterator(0ul), [=] XGBOOST_DEVICE(size_t i) {
|
||||
auto w = get_weight[d_sorted_idx[i]];
|
||||
return thrust::make_pair(labels[d_sorted_idx[i]] * w,
|
||||
(1.0f - labels[d_sorted_idx[i]]) * w);
|
||||
});
|
||||
dh::XGBCachingDeviceAllocator<char> alloc;
|
||||
float total_pos, total_neg;
|
||||
double total_pos, total_neg;
|
||||
thrust::tie(total_pos, total_neg) =
|
||||
thrust::reduce(thrust::cuda::par(alloc), it, it + labels.size(),
|
||||
Pair{0.0f, 0.0f}, PairPlus<float, float>{});
|
||||
Pair{0.0, 0.0}, PairPlus<double, double>{});
|
||||
|
||||
if (total_pos <= 0.0 || total_neg <= 0.0) {
|
||||
return {0.0f, 0.0f, 0.0f};
|
||||
}
|
||||
|
||||
auto fn = [total_pos] XGBOOST_DEVICE(float fp_prev, float fp, float tp_prev,
|
||||
float tp) {
|
||||
auto fn = [total_pos] XGBOOST_DEVICE(double fp_prev, double fp, double tp_prev,
|
||||
double tp) {
|
||||
return detail::CalcDeltaPRAUC(fp_prev, fp, tp_prev, tp, total_pos);
|
||||
};
|
||||
float fp, tp, auc;
|
||||
double fp, tp, auc;
|
||||
std::tie(fp, tp, auc) = GPUBinaryAUC(predts, info, device, d_sorted_idx, fn, cache);
|
||||
return std::make_tuple(1.0, 1.0, auc);
|
||||
}
|
||||
|
||||
float GPUMultiClassPRAUC(common::Span<float const> predts,
|
||||
double GPUMultiClassPRAUC(common::Span<float const> predts,
|
||||
MetaInfo const &info, int32_t device,
|
||||
std::shared_ptr<DeviceAUCCache> *p_cache,
|
||||
size_t n_classes) {
|
||||
@ -682,14 +681,14 @@ float GPUMultiClassPRAUC(common::Span<float const> predts,
|
||||
*/
|
||||
auto labels = info.labels_.ConstDeviceSpan();
|
||||
auto n_samples = info.num_row_;
|
||||
dh::caching_device_vector<thrust::pair<float, float>> totals(n_classes);
|
||||
dh::caching_device_vector<Pair> totals(n_classes);
|
||||
auto key_it =
|
||||
dh::MakeTransformIterator<size_t>(thrust::make_counting_iterator(0ul),
|
||||
[n_samples] XGBOOST_DEVICE(size_t i) {
|
||||
return i / n_samples; // class id
|
||||
});
|
||||
auto get_weight = OptionalWeights{d_weights};
|
||||
auto val_it = dh::MakeTransformIterator<thrust::pair<float, float>>(
|
||||
auto val_it = dh::MakeTransformIterator<thrust::pair<double, double>>(
|
||||
thrust::make_counting_iterator(0ul), [=] XGBOOST_DEVICE(size_t i) {
|
||||
auto idx = d_sorted_idx[i] % n_samples;
|
||||
auto w = get_weight[idx];
|
||||
@ -701,14 +700,14 @@ float GPUMultiClassPRAUC(common::Span<float const> predts,
|
||||
thrust::reduce_by_key(thrust::cuda::par(alloc), key_it,
|
||||
key_it + predts.size(), val_it,
|
||||
thrust::make_discard_iterator(), totals.begin(),
|
||||
thrust::equal_to<size_t>{}, PairPlus<float, float>{});
|
||||
thrust::equal_to<size_t>{}, PairPlus<double, double>{});
|
||||
|
||||
/**
|
||||
* Calculate AUC
|
||||
*/
|
||||
auto d_totals = dh::ToSpan(totals);
|
||||
auto fn = [d_totals] XGBOOST_DEVICE(float fp_prev, float fp, float tp_prev,
|
||||
float tp, size_t class_id) {
|
||||
auto fn = [d_totals] XGBOOST_DEVICE(double fp_prev, double fp, double tp_prev,
|
||||
double tp, size_t class_id) {
|
||||
auto total_pos = d_totals[class_id].first;
|
||||
return detail::CalcDeltaPRAUC(fp_prev, fp, tp_prev, tp,
|
||||
d_totals[class_id].first);
|
||||
@ -718,7 +717,7 @@ float GPUMultiClassPRAUC(common::Span<float const> predts,
|
||||
}
|
||||
|
||||
template <typename Fn>
|
||||
std::pair<float, uint32_t>
|
||||
std::pair<double, uint32_t>
|
||||
GPURankingPRAUCImpl(common::Span<float const> predts, MetaInfo const &info,
|
||||
common::Span<uint32_t> d_group_ptr, int32_t device,
|
||||
std::shared_ptr<DeviceAUCCache> cache, Fn area_fn) {
|
||||
@ -736,7 +735,7 @@ GPURankingPRAUCImpl(common::Span<float const> predts, MetaInfo const &info,
|
||||
* Linear scan
|
||||
*/
|
||||
size_t n_samples = labels.size();
|
||||
dh::caching_device_vector<float> d_auc(n_groups, 0);
|
||||
dh::caching_device_vector<double> d_auc(n_groups, 0);
|
||||
auto get_weight = OptionalWeights{weights};
|
||||
auto d_fptp = dh::ToSpan(cache->fptp);
|
||||
auto get_fp_tp = [=] XGBOOST_DEVICE(size_t i) {
|
||||
@ -816,33 +815,33 @@ GPURankingPRAUCImpl(common::Span<float const> predts, MetaInfo const &info,
|
||||
/**
|
||||
* Scale the groups with number of samples for each group.
|
||||
*/
|
||||
float auc;
|
||||
double auc;
|
||||
uint32_t invalid_groups;
|
||||
{
|
||||
auto it = dh::MakeTransformIterator<thrust::pair<float, uint32_t>>(
|
||||
auto it = dh::MakeTransformIterator<thrust::pair<double, uint32_t>>(
|
||||
thrust::make_counting_iterator(0ul), [=] XGBOOST_DEVICE(size_t g) {
|
||||
float fp, tp;
|
||||
double fp, tp;
|
||||
thrust::tie(fp, tp) = d_fptp[LastOf(g, d_group_ptr)];
|
||||
float area = fp * tp;
|
||||
double area = fp * tp;
|
||||
auto n_documents = d_group_ptr[g + 1] - d_group_ptr[g];
|
||||
if (area > 0 && n_documents >= 2) {
|
||||
return thrust::make_pair(s_d_auc[g], static_cast<uint32_t>(0));
|
||||
}
|
||||
return thrust::make_pair(0.0f, static_cast<uint32_t>(1));
|
||||
return thrust::make_pair(0.0, static_cast<uint32_t>(1));
|
||||
});
|
||||
thrust::tie(auc, invalid_groups) = thrust::reduce(
|
||||
thrust::cuda::par(alloc), it, it + n_groups,
|
||||
thrust::pair<float, uint32_t>(0.0f, 0), PairPlus<float, uint32_t>{});
|
||||
thrust::pair<double, uint32_t>(0.0, 0), PairPlus<double, uint32_t>{});
|
||||
}
|
||||
return std::make_pair(auc, n_groups - invalid_groups);
|
||||
}
|
||||
|
||||
std::pair<float, uint32_t>
|
||||
std::pair<double, uint32_t>
|
||||
GPURankingPRAUC(common::Span<float const> predts, MetaInfo const &info,
|
||||
int32_t device, std::shared_ptr<DeviceAUCCache> *p_cache) {
|
||||
dh::safe_cuda(cudaSetDevice(device));
|
||||
if (predts.empty()) {
|
||||
return std::make_pair(0.0f, static_cast<uint32_t>(0));
|
||||
return std::make_pair(0.0, static_cast<uint32_t>(0));
|
||||
}
|
||||
|
||||
auto &cache = *p_cache;
|
||||
@ -870,11 +869,11 @@ GPURankingPRAUC(common::Span<float const> predts, MetaInfo const &info,
|
||||
* Get total positive/negative for each group.
|
||||
*/
|
||||
auto d_weights = info.weights_.ConstDeviceSpan();
|
||||
dh::caching_device_vector<thrust::pair<float, float>> totals(n_groups);
|
||||
dh::caching_device_vector<thrust::pair<double, double>> totals(n_groups);
|
||||
auto key_it = dh::MakeTransformIterator<size_t>(
|
||||
thrust::make_counting_iterator(0ul),
|
||||
[=] XGBOOST_DEVICE(size_t i) { return dh::SegmentId(d_group_ptr, i); });
|
||||
auto val_it = dh::MakeTransformIterator<thrust::pair<float, float>>(
|
||||
auto val_it = dh::MakeTransformIterator<Pair>(
|
||||
thrust::make_counting_iterator(0ul), [=] XGBOOST_DEVICE(size_t i) {
|
||||
float w = 1.0f;
|
||||
if (!d_weights.empty()) {
|
||||
@ -883,19 +882,19 @@ GPURankingPRAUC(common::Span<float const> predts, MetaInfo const &info,
|
||||
w = d_weights[g];
|
||||
}
|
||||
auto y = labels[i];
|
||||
return thrust::make_pair(y * w, (1.0f - y) * w);
|
||||
return thrust::make_pair(y * w, (1.0 - y) * w);
|
||||
});
|
||||
thrust::reduce_by_key(thrust::cuda::par(alloc), key_it,
|
||||
key_it + predts.size(), val_it,
|
||||
thrust::make_discard_iterator(), totals.begin(),
|
||||
thrust::equal_to<size_t>{}, PairPlus<float, float>{});
|
||||
thrust::equal_to<size_t>{}, PairPlus<double, double>{});
|
||||
|
||||
/**
|
||||
* Calculate AUC
|
||||
*/
|
||||
auto d_totals = dh::ToSpan(totals);
|
||||
auto fn = [d_totals] XGBOOST_DEVICE(float fp_prev, float fp, float tp_prev,
|
||||
float tp, size_t group_id) {
|
||||
auto fn = [d_totals] XGBOOST_DEVICE(double fp_prev, double fp, double tp_prev,
|
||||
double tp, size_t group_id) {
|
||||
auto total_pos = d_totals[group_id].first;
|
||||
return detail::CalcDeltaPRAUC(fp_prev, fp, tp_prev, tp,
|
||||
d_totals[group_id].first);
|
||||
|
||||
@ -23,59 +23,60 @@ namespace metric {
|
||||
/***********
|
||||
* ROC AUC *
|
||||
***********/
|
||||
XGBOOST_DEVICE inline float TrapezoidArea(float x0, float x1, float y0, float y1) {
|
||||
XGBOOST_DEVICE inline double TrapezoidArea(double x0, double x1, double y0, double y1) {
|
||||
return std::abs(x0 - x1) * (y0 + y1) * 0.5f;
|
||||
}
|
||||
|
||||
struct DeviceAUCCache;
|
||||
|
||||
std::tuple<float, float, float>
|
||||
std::tuple<double, double, double>
|
||||
GPUBinaryROCAUC(common::Span<float const> predts, MetaInfo const &info,
|
||||
int32_t device, std::shared_ptr<DeviceAUCCache> *p_cache);
|
||||
|
||||
float GPUMultiClassROCAUC(common::Span<float const> predts,
|
||||
MetaInfo const &info, int32_t device,
|
||||
std::shared_ptr<DeviceAUCCache> *cache,
|
||||
size_t n_classes);
|
||||
double GPUMultiClassROCAUC(common::Span<float const> predts,
|
||||
MetaInfo const &info, int32_t device,
|
||||
std::shared_ptr<DeviceAUCCache> *cache,
|
||||
size_t n_classes);
|
||||
|
||||
std::pair<float, uint32_t>
|
||||
std::pair<double, uint32_t>
|
||||
GPURankingAUC(common::Span<float const> predts, MetaInfo const &info,
|
||||
int32_t device, std::shared_ptr<DeviceAUCCache> *cache);
|
||||
|
||||
/**********
|
||||
* PR AUC *
|
||||
**********/
|
||||
std::tuple<float, float, float>
|
||||
std::tuple<double, double, double>
|
||||
GPUBinaryPRAUC(common::Span<float const> predts, MetaInfo const &info,
|
||||
int32_t device, std::shared_ptr<DeviceAUCCache> *p_cache);
|
||||
|
||||
float GPUMultiClassPRAUC(common::Span<float const> predts, MetaInfo const &info,
|
||||
int32_t device, std::shared_ptr<DeviceAUCCache> *cache,
|
||||
size_t n_classes);
|
||||
double GPUMultiClassPRAUC(common::Span<float const> predts,
|
||||
MetaInfo const &info, int32_t device,
|
||||
std::shared_ptr<DeviceAUCCache> *cache,
|
||||
size_t n_classes);
|
||||
|
||||
std::pair<float, uint32_t>
|
||||
std::pair<double, uint32_t>
|
||||
GPURankingPRAUC(common::Span<float const> predts, MetaInfo const &info,
|
||||
int32_t device, std::shared_ptr<DeviceAUCCache> *cache);
|
||||
|
||||
namespace detail {
|
||||
XGBOOST_DEVICE inline float CalcH(float fp_a, float fp_b, float tp_a,
|
||||
float tp_b) {
|
||||
XGBOOST_DEVICE inline double CalcH(double fp_a, double fp_b, double tp_a,
|
||||
double tp_b) {
|
||||
return (fp_b - fp_a) / (tp_b - tp_a);
|
||||
}
|
||||
|
||||
XGBOOST_DEVICE inline float CalcB(float fp_a, float h, float tp_a, float total_pos) {
|
||||
XGBOOST_DEVICE inline double CalcB(double fp_a, double h, double tp_a, double total_pos) {
|
||||
return (fp_a - h * tp_a) / total_pos;
|
||||
}
|
||||
|
||||
XGBOOST_DEVICE inline float CalcA(float h) { return h + 1; }
|
||||
XGBOOST_DEVICE inline double CalcA(double h) { return h + 1; }
|
||||
|
||||
XGBOOST_DEVICE inline float CalcDeltaPRAUC(float fp_prev, float fp,
|
||||
float tp_prev, float tp,
|
||||
float total_pos) {
|
||||
float pr_prev = tp_prev / total_pos;
|
||||
float pr = tp / total_pos;
|
||||
XGBOOST_DEVICE inline double CalcDeltaPRAUC(double fp_prev, double fp,
|
||||
double tp_prev, double tp,
|
||||
double total_pos) {
|
||||
double pr_prev = tp_prev / total_pos;
|
||||
double pr = tp / total_pos;
|
||||
|
||||
float h{0}, a{0}, b{0};
|
||||
double h{0}, a{0}, b{0};
|
||||
|
||||
if (tp == tp_prev) {
|
||||
a = 1.0;
|
||||
@ -86,7 +87,7 @@ XGBOOST_DEVICE inline float CalcDeltaPRAUC(float fp_prev, float fp,
|
||||
b = detail::CalcB(fp_prev, h, tp_prev, total_pos);
|
||||
}
|
||||
|
||||
float area = 0;
|
||||
double area = 0;
|
||||
if (b != 0.0) {
|
||||
area = (pr - pr_prev -
|
||||
b / a * (std::log(a * pr + b) - std::log(a * pr_prev + b))) /
|
||||
|
||||
@ -86,9 +86,9 @@ class ElementWiseMetricsReduction {
|
||||
thrust::cuda::par(alloc),
|
||||
begin, end,
|
||||
[=] XGBOOST_DEVICE(size_t idx) {
|
||||
bst_float weight = is_null_weight ? 1.0f : s_weights[idx];
|
||||
float weight = is_null_weight ? 1.0f : s_weights[idx];
|
||||
|
||||
bst_float residue = d_policy.EvalRow(s_label[idx], s_preds[idx]);
|
||||
float residue = d_policy.EvalRow(s_label[idx], s_preds[idx]);
|
||||
residue *= weight;
|
||||
return PackedReduceResult{ residue, weight };
|
||||
},
|
||||
@ -141,7 +141,7 @@ struct EvalRowRMSE {
|
||||
bst_float diff = label - pred;
|
||||
return diff * diff;
|
||||
}
|
||||
static bst_float GetFinal(bst_float esum, bst_float wsum) {
|
||||
static double GetFinal(double esum, double wsum) {
|
||||
return wsum == 0 ? std::sqrt(esum) : std::sqrt(esum / wsum);
|
||||
}
|
||||
};
|
||||
@ -155,7 +155,7 @@ struct EvalRowRMSLE {
|
||||
bst_float diff = std::log1p(label) - std::log1p(pred);
|
||||
return diff * diff;
|
||||
}
|
||||
static bst_float GetFinal(bst_float esum, bst_float wsum) {
|
||||
static double GetFinal(double esum, double wsum) {
|
||||
return wsum == 0 ? std::sqrt(esum) : std::sqrt(esum / wsum);
|
||||
}
|
||||
};
|
||||
@ -168,7 +168,7 @@ struct EvalRowMAE {
|
||||
XGBOOST_DEVICE bst_float EvalRow(bst_float label, bst_float pred) const {
|
||||
return std::abs(label - pred);
|
||||
}
|
||||
static bst_float GetFinal(bst_float esum, bst_float wsum) {
|
||||
static double GetFinal(double esum, double wsum) {
|
||||
return wsum == 0 ? esum : esum / wsum;
|
||||
}
|
||||
};
|
||||
@ -180,7 +180,7 @@ struct EvalRowMAPE {
|
||||
XGBOOST_DEVICE bst_float EvalRow(bst_float label, bst_float pred) const {
|
||||
return std::abs((label - pred) / label);
|
||||
}
|
||||
static bst_float GetFinal(bst_float esum, bst_float wsum) {
|
||||
static double GetFinal(double esum, double wsum) {
|
||||
return wsum == 0 ? esum : esum / wsum;
|
||||
}
|
||||
};
|
||||
@ -202,7 +202,7 @@ struct EvalRowLogLoss {
|
||||
}
|
||||
}
|
||||
|
||||
static bst_float GetFinal(bst_float esum, bst_float wsum) {
|
||||
static double GetFinal(double esum, double wsum) {
|
||||
return wsum == 0 ? esum : esum / wsum;
|
||||
}
|
||||
};
|
||||
@ -215,7 +215,7 @@ struct EvalRowMPHE {
|
||||
bst_float diff = label - pred;
|
||||
return std::sqrt( 1 + diff * diff) - 1;
|
||||
}
|
||||
static bst_float GetFinal(bst_float esum, bst_float wsum) {
|
||||
static double GetFinal(double esum, double wsum) {
|
||||
return wsum == 0 ? esum : esum / wsum;
|
||||
}
|
||||
};
|
||||
@ -244,13 +244,12 @@ struct EvalError {
|
||||
}
|
||||
}
|
||||
|
||||
XGBOOST_DEVICE bst_float EvalRow(
|
||||
bst_float label, bst_float pred) const {
|
||||
XGBOOST_DEVICE bst_float EvalRow(bst_float label, bst_float pred) const {
|
||||
// assume label is in [0,1]
|
||||
return pred > threshold_ ? 1.0f - label : label;
|
||||
}
|
||||
|
||||
static bst_float GetFinal(bst_float esum, bst_float wsum) {
|
||||
static double GetFinal(double esum, double wsum) {
|
||||
return wsum == 0 ? esum : esum / wsum;
|
||||
}
|
||||
|
||||
@ -270,7 +269,7 @@ struct EvalPoissonNegLogLik {
|
||||
return common::LogGamma(y + 1.0f) + py - std::log(py) * y;
|
||||
}
|
||||
|
||||
static bst_float GetFinal(bst_float esum, bst_float wsum) {
|
||||
static double GetFinal(double esum, double wsum) {
|
||||
return wsum == 0 ? esum : esum / wsum;
|
||||
}
|
||||
};
|
||||
@ -291,7 +290,7 @@ struct EvalGammaDeviance {
|
||||
return std::log(predt / label) + label / predt - 1;
|
||||
}
|
||||
|
||||
static bst_float GetFinal(bst_float esum, bst_float wsum) {
|
||||
static double GetFinal(double esum, double wsum) {
|
||||
if (wsum <= 0) {
|
||||
wsum = kRtEps;
|
||||
}
|
||||
@ -317,7 +316,7 @@ struct EvalGammaNLogLik {
|
||||
// general form for exponential family.
|
||||
return -((y * theta - b) / a + c);
|
||||
}
|
||||
static bst_float GetFinal(bst_float esum, bst_float wsum) {
|
||||
static double GetFinal(double esum, double wsum) {
|
||||
return wsum == 0 ? esum : esum / wsum;
|
||||
}
|
||||
};
|
||||
@ -343,7 +342,7 @@ struct EvalTweedieNLogLik {
|
||||
bst_float b = std::exp((2 - rho_) * std::log(p)) / (2 - rho_);
|
||||
return -a + b;
|
||||
}
|
||||
static bst_float GetFinal(bst_float esum, bst_float wsum) {
|
||||
static double GetFinal(double esum, double wsum) {
|
||||
return wsum == 0 ? esum : esum / wsum;
|
||||
}
|
||||
|
||||
@ -360,9 +359,8 @@ struct EvalEWiseBase : public Metric {
|
||||
explicit EvalEWiseBase(char const* policy_param) :
|
||||
policy_{policy_param}, reducer_{policy_} {}
|
||||
|
||||
bst_float Eval(const HostDeviceVector<bst_float>& preds,
|
||||
const MetaInfo& info,
|
||||
bool distributed) override {
|
||||
double Eval(const HostDeviceVector<bst_float> &preds, const MetaInfo &info,
|
||||
bool distributed) override {
|
||||
CHECK_EQ(preds.Size(), info.labels_.Size())
|
||||
<< "label and prediction size not match, "
|
||||
<< "hint: use merror or mlogloss for multi-class classification";
|
||||
|
||||
@ -167,9 +167,8 @@ class MultiClassMetricsReduction {
|
||||
*/
|
||||
template<typename Derived>
|
||||
struct EvalMClassBase : public Metric {
|
||||
bst_float Eval(const HostDeviceVector<bst_float> &preds,
|
||||
const MetaInfo &info,
|
||||
bool distributed) override {
|
||||
double Eval(const HostDeviceVector<float> &preds, const MetaInfo &info,
|
||||
bool distributed) override {
|
||||
if (info.labels_.Size() == 0) {
|
||||
CHECK_EQ(preds.Size(), 0);
|
||||
} else {
|
||||
@ -206,7 +205,7 @@ struct EvalMClassBase : public Metric {
|
||||
* \param esum the sum statistics returned by EvalRow
|
||||
* \param wsum sum of weight
|
||||
*/
|
||||
inline static bst_float GetFinal(bst_float esum, bst_float wsum) {
|
||||
inline static double GetFinal(double esum, double wsum) {
|
||||
return esum / wsum;
|
||||
}
|
||||
|
||||
|
||||
@ -102,9 +102,8 @@ struct EvalAMS : public Metric {
|
||||
name_ = os.str();
|
||||
}
|
||||
|
||||
bst_float Eval(const HostDeviceVector<bst_float> &preds,
|
||||
const MetaInfo &info,
|
||||
bool distributed) override {
|
||||
double Eval(const HostDeviceVector<bst_float> &preds, const MetaInfo &info,
|
||||
bool distributed) override {
|
||||
CHECK(!distributed) << "metric AMS do not support distributed evaluation";
|
||||
using namespace std; // NOLINT(*)
|
||||
|
||||
@ -163,9 +162,8 @@ struct EvalRank : public Metric, public EvalRankConfig {
|
||||
std::unique_ptr<xgboost::Metric> rank_gpu_;
|
||||
|
||||
public:
|
||||
bst_float Eval(const HostDeviceVector<bst_float> &preds,
|
||||
const MetaInfo &info,
|
||||
bool distributed) override {
|
||||
double Eval(const HostDeviceVector<bst_float> &preds, const MetaInfo &info,
|
||||
bool distributed) override {
|
||||
CHECK_EQ(preds.Size(), info.labels_.Size())
|
||||
<< "label size predict size not match";
|
||||
|
||||
@ -222,14 +220,12 @@ struct EvalRank : public Metric, public EvalRankConfig {
|
||||
}
|
||||
|
||||
if (distributed) {
|
||||
bst_float dat[2];
|
||||
dat[0] = static_cast<bst_float>(sum_metric);
|
||||
dat[1] = static_cast<bst_float>(ngroups);
|
||||
double dat[2]{sum_metric, static_cast<double>(ngroups)};
|
||||
// approximately estimate the metric using mean
|
||||
rabit::Allreduce<rabit::op::Sum>(dat, 2);
|
||||
return dat[0] / dat[1];
|
||||
} else {
|
||||
return static_cast<bst_float>(sum_metric) / ngroups;
|
||||
return sum_metric / ngroups;
|
||||
}
|
||||
}
|
||||
|
||||
@ -335,9 +331,9 @@ struct EvalMAP : public EvalRank {
|
||||
return sumap;
|
||||
} else {
|
||||
if (this->minus) {
|
||||
return 0.0f;
|
||||
return 0.0;
|
||||
} else {
|
||||
return 1.0f;
|
||||
return 1.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -347,9 +343,8 @@ struct EvalMAP : public EvalRank {
|
||||
struct EvalCox : public Metric {
|
||||
public:
|
||||
EvalCox() = default;
|
||||
bst_float Eval(const HostDeviceVector<bst_float> &preds,
|
||||
const MetaInfo &info,
|
||||
bool distributed) override {
|
||||
double Eval(const HostDeviceVector<bst_float> &preds, const MetaInfo &info,
|
||||
bool distributed) override {
|
||||
CHECK(!distributed) << "Cox metric does not support distributed evaluation";
|
||||
using namespace std; // NOLINT(*)
|
||||
|
||||
|
||||
@ -29,9 +29,8 @@ DMLC_REGISTRY_FILE_TAG(rank_metric_gpu);
|
||||
template <typename EvalMetricT>
|
||||
struct EvalRankGpu : public Metric, public EvalRankConfig {
|
||||
public:
|
||||
bst_float Eval(const HostDeviceVector<bst_float> &preds,
|
||||
const MetaInfo &info,
|
||||
bool distributed) override {
|
||||
double Eval(const HostDeviceVector<bst_float> &preds, const MetaInfo &info,
|
||||
bool distributed) override {
|
||||
// Sanity check is done by the caller
|
||||
std::vector<unsigned> tgptr(2, 0);
|
||||
tgptr[1] = static_cast<unsigned>(preds.Size());
|
||||
|
||||
@ -206,9 +206,8 @@ template <typename Policy> struct EvalEWiseSurvivalBase : public Metric {
|
||||
CHECK(tparam_);
|
||||
}
|
||||
|
||||
bst_float Eval(const HostDeviceVector<bst_float>& preds,
|
||||
const MetaInfo& info,
|
||||
bool distributed) override {
|
||||
double Eval(const HostDeviceVector<float> &preds, const MetaInfo &info,
|
||||
bool distributed) override {
|
||||
CHECK_EQ(preds.Size(), info.labels_lower_bound_.Size());
|
||||
CHECK_EQ(preds.Size(), info.labels_upper_bound_.Size());
|
||||
CHECK(tparam_);
|
||||
@ -221,7 +220,7 @@ template <typename Policy> struct EvalEWiseSurvivalBase : public Metric {
|
||||
if (distributed) {
|
||||
rabit::Allreduce<rabit::op::Sum>(dat, 2);
|
||||
}
|
||||
return static_cast<bst_float>(Policy::GetFinal(dat[0], dat[1]));
|
||||
return Policy::GetFinal(dat[0], dat[1]);
|
||||
}
|
||||
|
||||
const char* Name() const override {
|
||||
@ -241,9 +240,8 @@ struct AFTNLogLikDispatcher : public Metric {
|
||||
return "aft-nloglik";
|
||||
}
|
||||
|
||||
bst_float Eval(const HostDeviceVector<bst_float>& preds,
|
||||
const MetaInfo& info,
|
||||
bool distributed) override {
|
||||
double Eval(const HostDeviceVector<bst_float> &preds, const MetaInfo &info,
|
||||
bool distributed) override {
|
||||
CHECK(metric_) << "AFT metric must be configured first, with distribution type and scale";
|
||||
return metric_->Eval(preds, info, distributed);
|
||||
}
|
||||
|
||||
@ -1331,8 +1331,11 @@ def test_evaluation_metric():
|
||||
)
|
||||
clf.fit(X, y, eval_set=[(X, y)])
|
||||
internal = clf.evals_result()
|
||||
|
||||
np.testing.assert_allclose(
|
||||
custom["validation_0"]["merror"], internal["validation_0"]["merror"]
|
||||
custom["validation_0"]["merror"],
|
||||
internal["validation_0"]["merror"],
|
||||
atol=1e-6
|
||||
)
|
||||
|
||||
clf = xgb.XGBRFClassifier(
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user