Merge pull request #315 from jseabold/sklearn-handle-missing
ENH: Allow settable missing value in sklearn api.
This commit is contained in:
commit
0c6bfa74b5
@ -93,6 +93,7 @@ def ctypes2numpy(cptr, length, dtype):
|
||||
raise RuntimeError('memmove failed')
|
||||
return res
|
||||
|
||||
|
||||
def ctypes2buffer(cptr, length):
|
||||
if not isinstance(cptr, ctypes.POINTER(ctypes.c_char)):
|
||||
raise RuntimeError('expected char pointer')
|
||||
@ -102,6 +103,7 @@ def ctypes2buffer(cptr, length):
|
||||
raise RuntimeError('memmove failed')
|
||||
return res
|
||||
|
||||
|
||||
def c_str(string):
|
||||
return ctypes.c_char_p(string.encode('utf-8'))
|
||||
|
||||
@ -894,10 +896,13 @@ class XGBModel(XGBModelBase):
|
||||
The initial prediction score of all instances, global bias.
|
||||
seed : int
|
||||
Random number seed.
|
||||
missing : float, optional
|
||||
Value in the data which needs to be present as a missing value. If
|
||||
None, defaults to np.nan.
|
||||
"""
|
||||
def __init__(self, max_depth=3, learning_rate=0.1, n_estimators=100, silent=True, objective="reg:linear",
|
||||
nthread=-1, gamma=0, min_child_weight=1, max_delta_step=0, subsample=1, colsample_bytree=1,
|
||||
base_score=0.5, seed=0):
|
||||
base_score=0.5, seed=0, missing=None):
|
||||
if not SKLEARN_INSTALLED:
|
||||
raise XGBoostError('sklearn needs to be installed in order to use this module')
|
||||
self.max_depth = max_depth
|
||||
@ -915,6 +920,7 @@ class XGBModel(XGBModelBase):
|
||||
|
||||
self.base_score = base_score
|
||||
self.seed = seed
|
||||
self.missing = missing or np.nan
|
||||
|
||||
self._Booster = None
|
||||
|
||||
@ -940,6 +946,12 @@ class XGBModel(XGBModelBase):
|
||||
raise XGBoostError('need to call fit beforehand')
|
||||
return self._Booster
|
||||
|
||||
def get_params(self, deep=False):
|
||||
params = super(XGBModel, self).get_params(deep=deep)
|
||||
if params['missing'] is np.nan:
|
||||
params['missing'] = None # sklearn doesn't handle nan. see #4725
|
||||
return params
|
||||
|
||||
def get_xgb_params(self):
|
||||
xgb_params = self.get_params()
|
||||
|
||||
@ -950,12 +962,12 @@ class XGBModel(XGBModelBase):
|
||||
return xgb_params
|
||||
|
||||
def fit(self, X, y):
|
||||
trainDmatrix = DMatrix(X, label=y)
|
||||
trainDmatrix = DMatrix(X, label=y, missing=self.missing)
|
||||
self._Booster = train(self.get_xgb_params(), trainDmatrix, self.n_estimators)
|
||||
return self
|
||||
|
||||
def predict(self, X):
|
||||
testDmatrix = DMatrix(X)
|
||||
testDmatrix = DMatrix(X, missing=self.missing)
|
||||
return self.booster().predict(testDmatrix)
|
||||
|
||||
|
||||
@ -966,11 +978,11 @@ class XGBClassifier(XGBModel, XGBClassifier):
|
||||
|
||||
def __init__(self, max_depth=3, learning_rate=0.1, n_estimators=100, silent=True, objective="binary:logistic",
|
||||
nthread=-1, gamma=0, min_child_weight=1, max_delta_step=0, subsample=1, colsample_bytree=1,
|
||||
base_score=0.5, seed=0):
|
||||
base_score=0.5, seed=0, missing=None):
|
||||
super(XGBClassifier, self).__init__(max_depth, learning_rate, n_estimators, silent, objective,
|
||||
nthread, gamma, min_child_weight, max_delta_step, subsample,
|
||||
colsample_bytree,
|
||||
base_score, seed)
|
||||
base_score, seed, missing)
|
||||
|
||||
def fit(self, X, y, sample_weight=None):
|
||||
self.classes_ = list(np.unique(y))
|
||||
@ -987,16 +999,18 @@ class XGBClassifier(XGBModel, XGBClassifier):
|
||||
training_labels = self._le.transform(y)
|
||||
|
||||
if sample_weight is not None:
|
||||
trainDmatrix = DMatrix(X, label=training_labels, weight=sample_weight)
|
||||
trainDmatrix = DMatrix(X, label=training_labels, weight=sample_weight,
|
||||
missing=self.missing)
|
||||
else:
|
||||
trainDmatrix = DMatrix(X, label=training_labels)
|
||||
trainDmatrix = DMatrix(X, label=training_labels,
|
||||
missing=self.missing)
|
||||
|
||||
self._Booster = train(xgb_options, trainDmatrix, self.n_estimators)
|
||||
|
||||
return self
|
||||
|
||||
def predict(self, X):
|
||||
testDmatrix = DMatrix(X)
|
||||
testDmatrix = DMatrix(X, missing=self.missing)
|
||||
class_probs = self.booster().predict(testDmatrix)
|
||||
if len(class_probs.shape) > 1:
|
||||
column_indexes = np.argmax(class_probs, axis=1)
|
||||
@ -1006,7 +1020,7 @@ class XGBClassifier(XGBModel, XGBClassifier):
|
||||
return self._le.inverse_transform(column_indexes)
|
||||
|
||||
def predict_proba(self, X):
|
||||
testDmatrix = DMatrix(X)
|
||||
testDmatrix = DMatrix(X, missing=self.missing)
|
||||
class_probs = self.booster().predict(testDmatrix)
|
||||
if self.objective == "multi:softprob":
|
||||
return class_probs
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user