diff --git a/wrapper/xgboost.py b/wrapper/xgboost.py index 2ae12c341..6b9bc83c6 100644 --- a/wrapper/xgboost.py +++ b/wrapper/xgboost.py @@ -399,7 +399,7 @@ class Booster: fmap[fid]+= 1 return fmap -def train(params, dtrain, num_boost_round = 10, evals = [], fobj=None, feval=None): +def train(params, dtrain, num_boost_round = 10, evals = [], obj=None, feval=None): """ train a booster with given paramaters Args: params: dict @@ -410,14 +410,14 @@ def train(params, dtrain, num_boost_round = 10, evals = [], fobj=None, feval=Non num of round to be boosted evals: list list of items to be evaluated - fobj: function + obj: function cutomized objective function feval: function cutomized evaluation function """ bst = Booster(params, [dtrain]+[ d[0] for d in evals ] ) for i in range(num_boost_round): - bst.update( dtrain, i, fobj ) + bst.update( dtrain, i, obj ) if len(evals) != 0: sys.stderr.write(bst.eval_set(evals, i, feval).decode()+'\n') return bst @@ -487,7 +487,7 @@ def aggcv(rlist): return ret def cv(params, dtrain, num_boost_round = 10, nfold=3, eval_metrics = [], \ - weightscale=None, fobj=None, feval=None): + weightscale=None, obj=None, feval=None): """ cross validation with given paramaters Args: params: dict @@ -500,12 +500,12 @@ def cv(params, dtrain, num_boost_round = 10, nfold=3, eval_metrics = [], \ folds to do cv evals: list list of items to be evaluated - fobj: + obj: feval: """ cvfolds = mknfold(dtrain, nfold, params, 0, weightscale, evals_metrics) for i in range(num_boost_round): for f in cvfolds: - f.update(i, fobj) + f.update(i, obj) res = aggcv([f.eval(i, fval) for f in cvfolds]) sys.stderr.write(res+'\n')