Merge branch 'dev' of ssh://github.com/tqchen/xgboost into dev

This commit is contained in:
tqchen 2014-05-07 12:00:17 -07:00
commit 06327ff8d0
3 changed files with 277 additions and 183 deletions

View File

@ -238,6 +238,17 @@ namespace xgboost{
struct EvalNDCG : public EvalRankList{
public:
EvalNDCG(const char *name):EvalRankList(name){}
static inline float CalcDCG(const std::vector< float > &rec) {
double sumdcg = 0.0;
for (size_t i = 0; i < rec.size(); i++){
const unsigned rel = rec[i];
if (rel != 0){
sumdcg += logf(2.0f) *((1 << rel) - 1) / logf(i + 1);
}
}
return static_cast<float>(sumdcg);
}
protected:
inline float CalcDCG( const std::vector< std::pair<float,unsigned> > &rec ) const {
double sumdcg = 0.0;

View File

@ -7,6 +7,8 @@
*/
//#include "xgboost_regrank_sample.h"
#include <vector>
#include <functional>
#include "xgboost_regrank_sample.h"
#include "xgboost_regrank_utils.h"
namespace xgboost{
@ -262,5 +264,239 @@ namespace xgboost{
LossType loss;
};
};
namespace regrank{
// simple pairwise rank
class LambdaRankObj : public IObjFunction{
public:
LambdaRankObj(void){}
virtual ~LambdaRankObj(){}
virtual void SetParam(const char *name, const char *val){
if (!strcmp("loss_type", name)) loss_.loss_type = atoi(val);
if (!strcmp("sampler", name)) sampler_.AssignSampler(atoi(val));
if (!strcmp("lambda", name)) lambda_ = atoi(val);
}
private:
int lambda_;
const static int PAIRWISE = 0;
const static int MAP = 1;
const static int NDCG = 2;
sample::PairSamplerWrapper sampler_;
LossType loss_;
/* \brief Sorted tuples of a group by the predictions, and
* the fields in the return tuples successively are predicions,
* labels, and the original index of the instance in the group
*/
inline std::vector< sample::Triple<float, float, int> > GetSortedTuple(const std::vector<float> &preds,
const std::vector<float> &labels,
const std::vector<unsigned> &group_index,
int group){
std::vector< sample::Triple<float, float, int> > sorted_triple;
for (int j = group_index[group]; j < group_index[group + 1]; j++){
sorted_triple.push_back(sample::Triple<float, float, int>(preds[j], labels[j], j));
}
std::sort(sorted_triple.begin(), sorted_triple.end(), sample::Triplef1Comparer);
return sorted_triple;
}
/*
* \brief Get the position of instances after sorted
* \param sorted_triple the fields successively are predicions,
* labels, and the original index of the instance in the group
* \param start the offset index of the group
* \return a vector indicating the new position of each instance after sorted,
* for example,[1,0] means that the second instance is put ahead after sorted
*/
inline std::vector<int> GetIndexMap(std::vector< sample::Triple<float, float, int> > sorted_triple, int start){
std::vector<int> index_remap;
index_remap.resize(sorted_triple.size());
for (int i = 0; i < sorted_triple.size(); i++){
index_remap[sorted_triple[i].f3_ - start] = i;
}
return index_remap;
}
/*
* \brief Obtain the delta MAP if trying to switch the positions of instances in index1 or index2
* in sorted triples
* \param sorted_triple the fields are predition,label,original index
* \param index1,index2 the instances switched
* \param map_acc The first field is the accumulated precision, the second field is the
* accumulated precision assuming a positive instance is missing,
* the third field is the accumulated precision assuming that one more positive
* instance is inserted, the fourth field is the accumulated positive instance count
*/
inline float GetLambdaMAP(const std::vector< sample::Triple<float, float, int> > sorted_triple,
int index1, int index2,
std::vector< sample::Quadruple<float, float, float, float> > map_acc){
if (index1 == index2 || sorted_triple[index1].f2_ == sorted_triple[index2].f2_) return 0.0;
if (index1 > index2) std::swap(index1, index2);
float original = map_acc[index2].f1_; // The accumulated precision in the interval [index1,index2]
if (index1 != 0) original -= map_acc[index1 - 1].f1_;
float changed = 0;
if (sorted_triple[index1].f2_ < sorted_triple[index2].f2_){
changed += map_acc[index2 - 1].f3_ - map_acc[index1].f3_;
changed += (map_acc[index1].f4_ + 1.0f) / (index1 + 1);
}
else{
changed += map_acc[index2 - 1].f2_ - map_acc[index1].f2_;
changed += map_acc[index2].f4_ / (index2 + 1);
}
float ans = (changed - original) / (map_acc[map_acc.size() - 1].f4_);
if (ans < 0) ans = -ans;
return ans;
}
/*
* \brief Obtain the delta NDCG if trying to switch the positions of instances in index1 or index2
* in sorted triples. Here DCG is calculated as sigma_i 2^rel_i/log(i + 1)
* \param sorted_triple the fields are predition,label,original index
* \param index1,index2 the instances switched
* \param the IDCG of the list
*/
inline float GetLambdaNDCG(const std::vector< sample::Triple<float, float, int> > sorted_triple,
int index1,
int index2, float IDCG){
float original = (1 << (int)sorted_triple[index1].f2_) / log(index1 + 2)
+ (1 << (int)sorted_triple[index2].f2_) / log(index2 + 2);
float changed = (1 << (int)sorted_triple[index2].f2_) / log(index1 + 2)
+ (1 << (int)sorted_triple[index1].f2_) / log(index2 + 2);
float ans = (original - changed) / IDCG;
if (ans < 0) ans = -ans;
return ans;
}
inline float GetIDCG(const std::vector< sample::Triple<float, float, int> > sorted_triple){
std::vector<float> labels;
for (int i = 0; i < sorted_triple.size(); i++){
labels.push_back(sorted_triple[i].f2_);
}
std::sort(labels.begin(), labels.end(), std::greater<float>());
return EvalNDCG::CalcDCG(labels);
}
/*
* \brief preprocessing results for calculating delta MAP
* \return The first field is the accumulated precision, the second field is the
* accumulated precision assuming a positive instance is missing,
* the third field is the accumulated precision assuming that one more positive
* instance is inserted, the fourth field is the accumulated positive instance count
*/
inline std::vector< sample::Quadruple<float, float, float, float> > GetMAPAcc(const std::vector< sample::Triple<float, float, int> > sorted_triple){
std::vector< sample::Quadruple<float, float, float, float> > map_acc;
float hit = 0, acc1 = 0, acc2 = 0, acc3 = 0;
for (int i = 1; i <= sorted_triple.size(); i++){
if (sorted_triple[i-1].f2_ == 1) {
hit++;
acc1 += hit / i;
acc2 += (hit - 1) / i;
acc3 += (hit + 1) / i;
}
map_acc.push_back(sample::Quadruple<float, float, float, float>(acc1, acc2, acc3, hit));
}
return map_acc;
}
inline float GetLambdaDelta(std::vector< sample::Triple<float, float, int> > sorted_triple,
int ins1,int ins2,
std::vector< sample::Quadruple<float, float, float, float> > map_acc,
float IDCG){
float delta = 0.0;
switch (lambda_){
case PAIRWISE: delta = 1.0; break;
case MAP: delta = GetLambdaMAP(sorted_triple, ins1, ins2, map_acc); break;
case NDCG: delta = GetLambdaNDCG(sorted_triple, ins1, ins2, IDCG); break;
default: utils::Error("Cannot find the specified loss type");
}
return delta;
}
inline void GetGroupGradient(const std::vector<float> &preds,
const std::vector<float> &labels,
const std::vector<unsigned> &group_index,
std::vector<float> &grad,
std::vector<float> &hess,
const sample::Pairs& pairs,
int group){
bool j_better;
float pred_diff, pred_diff_exp, delta;
float first_order_gradient, second_order_gradient;
std::vector< sample::Triple<float, float, int> > sorted_triple;
std::vector<int> index_remap;
std::vector< sample::Quadruple<float, float, float, float> > map_acc;
float IDCG;
// preparing data for lambda NDCG
if (lambda_ == NDCG){
sorted_triple = GetSortedTuple(preds, labels, group_index, group);
IDCG = GetIDCG(sorted_triple);
index_remap = GetIndexMap(sorted_triple, group_index[group]);
}
// preparing data for lambda MAP
else if (lambda_ == MAP){
sorted_triple = GetSortedTuple(preds, labels, group_index, group);
map_acc = GetMAPAcc(sorted_triple);
index_remap = GetIndexMap(sorted_triple, group_index[group]);
}
for (int j = group_index[group]; j < group_index[group + 1]; j++){
std::vector<int> pair_instance = pairs.GetPairs(j);
for (int k = 0; k < pair_instance.size(); k++){
j_better = labels[j] > labels[pair_instance[k]];
if (j_better){
delta = GetLambdaDelta(sorted_triple, index_remap[j - group_index[group]],
index_remap[pair_instance[k] - group_index[group]],map_acc,IDCG);
pred_diff = preds[j] - preds[pair_instance[k]];
pred_diff_exp = j_better ? expf(-pred_diff) : expf(pred_diff);
first_order_gradient = delta * FirstOrderGradient(pred_diff_exp);
second_order_gradient = 2 * delta * SecondOrderGradient(pred_diff_exp);
hess[j] += second_order_gradient;
grad[j] += first_order_gradient;
hess[pair_instance[k]] += second_order_gradient;
grad[pair_instance[k]] += -first_order_gradient;
}
}
}
}
inline float FirstOrderGradient(float pred_diff_exp) const {
return -pred_diff_exp / (1 + pred_diff_exp);
}
inline float SecondOrderGradient(float pred_diff_exp) const {
return pred_diff_exp / pow(1 + pred_diff_exp, 2);
}
public:
virtual void GetGradient(const std::vector<float>& preds,
const DMatrix::Info &info,
int iter,
std::vector<float> &grad,
std::vector<float> &hess) {
grad.resize(preds.size()); hess.resize(preds.size());
const std::vector<unsigned> &group_index = info.group_ptr;
utils::Assert(group_index.size() != 0 && group_index.back() == preds.size(), "rank loss must have group file");
for (int i = 0; i < group_index.size() - 1; i++){
sample::Pairs pairs = sampler_.GenPairs(preds, info.labels, group_index[i], group_index[i + 1]);
//pairs.GetPairs()
GetGroupGradient(preds, info.labels, group_index, grad, hess, pairs, i);
}
}
virtual const char* DefaultEvalMetric(void) {
return "auc";
}
};
};
};
#endif

View File

@ -123,193 +123,40 @@ namespace xgboost {
BinaryLinearSampler binary_linear_sampler;
IPairSampler *sampler_;
};
}
}
namespace regrank{
// simple pairwise rank
class LambdaRankObj : public IObjFunction{
template<typename T1, typename T2, typename T3>
class Triple{
public:
LambdaRankObj(void){}
T1 f1_;
T2 f2_;
T3 f3_;
Triple(T1 f1, T2 f2, T3 f3) :f1_(f1), f2_(f2), f3_(f3){
virtual ~LambdaRankObj(){}
virtual void SetParam(const char *name, const char *val){
if (!strcmp("loss_type", name)) loss_.loss_type = atoi(val);
if (!strcmp("sampler", name)) sampler_.AssignSampler(atoi(val));
if (!strcmp("lambda", name)) lambda_ = atoi(val);
}
virtual void GetGradient(const std::vector<float>& preds,
const DMatrix::Info &info,
int iter,
std::vector<float> &grad,
std::vector<float> &hess) {
grad.resize(preds.size()); hess.resize(preds.size());
const std::vector<unsigned> &group_index = info.group_ptr;
utils::Assert(group_index.size() != 0 && group_index.back() == preds.size(), "rank loss must have group file");
for (int i = 0; i < group_index.size() - 1; i++){
sample::Pairs pairs = sampler_.GenPairs(preds, info.labels, group_index[i], group_index[i + 1]);
//pairs.GetPairs()
std::vector< std::tuple<float, float, int> > sorted_triple = GetSortedTuple(preds, info.labels, group_index, i);
std::vector<int> index_remap = GetIndexMap(sorted_triple, group_index[i]);
GetGroupGradient(preds, info.labels, group_index,
grad, hess, sorted_triple, index_remap, pairs, i);
}
}
virtual const char* DefaultEvalMetric(void) {
return "auc";
}
private:
int lambda_;
const static int PAIRWISE = 0;
const static int MAP = 1;
const static int NDCG = 2;
sample::PairSamplerWrapper sampler_;
LossType loss_;
/* \brief Sorted tuples of a group by the predictions, and
* the fields in the return tuples successively are predicions,
* labels, and the index of the instance
*/
inline std::vector< std::tuple<float, float, int> > GetSortedTuple(const std::vector<float> &preds,
const std::vector<float> &labels,
const std::vector<unsigned> &group_index,
int group){
std::vector< std::tuple<float, float, int> > sorted_triple;
for (int j = group_index[group]; j < group_index[group + 1]; j++){
sorted_triple.push_back(std::tuple<float, float, int>(preds[j], labels[j], j));
}
std::sort(sorted_triple.begin(), sorted_triple.end(),
[](std::tuple<float, float, int> a, std::tuple<float, float, int> b){
return std::get<0>(a) > std::get<0>(b);
});
return sorted_triple;
}
inline std::vector<int> GetIndexMap(std::vector< std::tuple<float, float, int> > sorted_triple, int start){
std::vector<int> index_remap;
index_remap.resize(sorted_triple.size());
for (int i = 0; i < sorted_triple.size(); i++){
index_remap[std::get<2>(sorted_triple[i]) - start] = i;
}
return index_remap;
}
inline float GetLambdaMAP(const std::vector< std::tuple<float, float, int> > sorted_triple,
int index1, int index2,
std::vector< std::tuple<float, float, float, float> > map_acc){
if (index1 > index2) std::swap(index1, index2);
float original = std::get<0>(map_acc[index2]);
if (index1 != 0) original -= std::get<0>(map_acc[index1 - 1]);
float changed = 0;
if (std::get<1>(sorted_triple[index1]) < std::get<1>(sorted_triple[index2])){
changed += std::get<2>(map_acc[index2 - 1]) - std::get<2>(map_acc[index1]);
changed += (std::get<3>(map_acc[index1])+ 1.0f) / (index1 + 1);
}
else{
changed += std::get<1>(map_acc[index2 - 1]) - std::get<1>(map_acc[index1]);
changed += std::get<3>(map_acc[index2]) / (index2 + 1);
}
float ans = (changed - original) / (std::get<3>(map_acc[map_acc.size() - 1]));
if (ans < 0) ans = -ans;
return ans;
}
inline float GetLambdaNDCG(const std::vector< std::tuple<float, float, int> > sorted_triple,
int index1,
int index2, float IDCG){
float original = pow(2, std::get<1>(sorted_triple[index1])) / log(index1 + 2)
+ pow(2, std::get<1>(sorted_triple[index2])) / log(index2 + 2);
float changed = pow(2, std::get<1>(sorted_triple[index2])) / log(index1 + 2)
+ pow(2, std::get<1>(sorted_triple[index1])) / log(index2 + 2);
float ans = (original - changed) / IDCG;
if (ans < 0) ans = -ans;
return ans;
}
inline float GetIDCG(const std::vector< std::tuple<float, float, int> > sorted_triple){
std::vector<float> labels;
for (int i = 0; i < sorted_triple.size(); i++){
labels.push_back(std::get<1>(sorted_triple[i]));
}
std::sort(labels.begin(), labels.end(), std::greater<float>());
return EvalNDCG::DCG(labels);
}
inline std::vector< std::tuple<float, float, float, float> > GetMAPAcc(const std::vector< std::tuple<float, float, int> > sorted_triple){
std::vector< std::tuple<float, float, float, float> > map_acc;
float hit = 0, acc1 = 0, acc2 = 0, acc3 = 0;
for (int i = 0; i < sorted_triple.size(); i++){
if (std::get<1>(sorted_triple[i]) == 1) {
hit++;
acc1 += hit / (i + 1);
acc2 += (hit - 1) / (i + 1);
acc3 += (hit + 1) / (i + 1);
}
map_acc.push_back(std::make_tuple(acc1, acc2, acc3, hit));
}
return map_acc;
}
inline void GetGroupGradient(const std::vector<float> &preds,
const std::vector<float> &labels,
const std::vector<unsigned> &group_index,
std::vector<float> &grad,
std::vector<float> &hess,
const std::vector< std::tuple<float, float, int> > sorted_triple,
const std::vector<int> index_remap,
const sample::Pairs& pairs,
int group){
bool j_better;
float IDCG, pred_diff, pred_diff_exp, delta;
float first_order_gradient, second_order_gradient;
std::vector< std::tuple<float, float, float, float> > map_acc;
if (lambda_ == NDCG){
IDCG = GetIDCG(sorted_triple);
}
else if (lambda_ == MAP){
map_acc = GetMAPAcc(sorted_triple);
}
for (int j = group_index[group]; j < group_index[group + 1]; j++){
std::vector<int> pair_instance = pairs.GetPairs(j);
for (int k = 0; k < pair_instance.size(); k++){
j_better = labels[j] > labels[pair_instance[k]];
if (j_better){
switch (lambda_){
case PAIRWISE: delta = 1.0; break;
case MAP: delta = GetLambdaMAP(sorted_triple, index_remap[j - group_index[group]], index_remap[pair_instance[k] - group_index[group]], map_acc); break;
case NDCG: delta = GetLambdaNDCG(sorted_triple, index_remap[j - group_index[group]], index_remap[pair_instance[k] - group_index[group]], IDCG); break;
default: utils::Error("Cannot find the specified loss type");
}
pred_diff = preds[preds[j] - pair_instance[k]];
pred_diff_exp = j_better ? expf(-pred_diff) : expf(pred_diff);
first_order_gradient = delta * FirstOrderGradient(pred_diff_exp);
second_order_gradient = 2 * delta * SecondOrderGradient(pred_diff_exp);
hess[j] += second_order_gradient;
grad[j] += first_order_gradient;
hess[pair_instance[k]] += second_order_gradient;
grad[pair_instance[k]] += -first_order_gradient;
}
}
}
}
inline float FirstOrderGradient(float pred_diff_exp) const {
return -pred_diff_exp / (1 + pred_diff_exp);
}
inline float SecondOrderGradient(float pred_diff_exp) const {
return pred_diff_exp / pow(1 + pred_diff_exp, 2);
}
};
template<typename T1, typename T2, typename T3, typename T4>
class Quadruple{
public:
T1 f1_;
T2 f2_;
T3 f3_;
T4 f4_;
Quadruple(T1 f1, T2 f2, T3 f3, T4 f4) :f1_(f1), f2_(f2), f3_(f3), f4_(f4){
}
};
bool Triplef1Comparer(const Triple<float, float, int> &a, const Triple<float, float, int> &b){
return a.f1_ > b.f1_;
}
}
}
}
#endif