adding sample weights for XGBRegressor (was this forgotten?) (#1874)
This commit is contained in:
parent
2b5b96d760
commit
036ee55fe0
@ -182,7 +182,7 @@ class XGBModel(XGBModelBase):
|
||||
xgb_params.pop('nthread', None)
|
||||
return xgb_params
|
||||
|
||||
def fit(self, X, y, eval_set=None, eval_metric=None,
|
||||
def fit(self, X, y, sample_weight=None, eval_set=None, eval_metric=None,
|
||||
early_stopping_rounds=None, verbose=True):
|
||||
# pylint: disable=missing-docstring,invalid-name,attribute-defined-outside-init
|
||||
"""
|
||||
@ -194,6 +194,8 @@ class XGBModel(XGBModelBase):
|
||||
Feature matrix
|
||||
y : array_like
|
||||
Labels
|
||||
sample_weight : array_like
|
||||
instance weights
|
||||
eval_set : list, optional
|
||||
A list of (X, y) tuple pairs to use as a validation set for
|
||||
early-stopping
|
||||
@ -219,7 +221,10 @@ class XGBModel(XGBModelBase):
|
||||
If `verbose` and an evaluation set is used, writes the evaluation
|
||||
metric measured on the validation set to stderr.
|
||||
"""
|
||||
trainDmatrix = DMatrix(X, label=y, missing=self.missing)
|
||||
if sample_weight is not None:
|
||||
trainDmatrix = DMatrix(X, label=y, weight=sample_weight, missing=self.missing)
|
||||
else:
|
||||
trainDmatrix = DMatrix(X, label=y, missing=self.missing)
|
||||
|
||||
evals_result = {}
|
||||
if eval_set is not None:
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user